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Shock wave profiles in the Burnett approximation
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This paper is devoted to a discussion of the profiles of shock waves using the full nonlinear Burnett
equations of hydrodynamics as they appear from the Chapman-Enskog solution to the Boltzmann equation.
The system considered is a dilute gas composed of rigid spheres. The numerical analysis is carried out by
transforming the hydrodynamic equations into a set of four first-order equations in four dimensions. We
compare the numerical solutions of the Burnett equations, obtained using Adam’s method, with the well known
direct simulation Monte Carlo method for different Mach numbers. An exhaustive mathematical analysis of the
results offered here has been done mainly in connection with the existence of heteroclinic trajectories between
the two stationary points located upflow and downflow. The main result of this study is that such a trajectory
exists for the Burnett equations for Mach numbers greater than 1. Our numerical calculations suggest that
heteroclinic trajectories exist up to a critical Mach number2(69) where local mathematical analysis and
numerical computations reveal a saddle-node—Hopf bifurcation. This upper limit for the existence of hetero-
clinic trajectories deserves further clarification.

PACS numbe(s): 47.40.Nm, 47.45-n, 51.10+y

[. INTRODUCTION unchanged. The Mott-Smith results rated a little better than
those obtained with Grad’s 13-moment method or with the
The problem of computing the structure of shock wavesChapman-Enskog method for solving the Boltzmann equa-
in fluids for a wide range of Mach numbers has been &ion, but the assumptions made are physically not very con-
perennial and debatable question in hydrodynamics. Untivincing. Once more, for further details we refer the reader to
the late 1950s most of the work directed at elucidating thehe vast literature availablgl5-24. Three main lines of
internal structure of a shock wave propagating in a fluid waghought that played an important role in the development of
based on the Navier-Stokes model of the continuum. As ishe subject arose from this effort. The first one is related to
well known, this model is based on the essential idea that ththe existence of kinetic theory solutions to the shock wave
viscous tensor and the heat flux generated in the fluid due tproblem. In his 1952 paper, Grati3] already asserted that it
a perturbation are expressed in terms of the deformation rateas unlikely that the 13-moment solution to the Boltzmann
and the temperature gradient, respectively. The amount afquation correctly determined the thickness of a shock wave
work pursued along this line is enormous, too much to bdor M~1.61. A few years later, Holway presented a proof
mentioned in detail here. Excellent reviews and further refclaiming that for Grad’s moment method of solving
erences may be found in the literatite-12]. The essence of Boltzmann's equation there exists a critical value of
the results obtained with the Navier-Stok@¢S) model as M (=~1.851) for which no continuous shock solution is pos-
clearly summarized in Ref7] is that its validity is satisfac- sible[25]. This statement was emphasized by Ruggeri only a
tory for realistic fluids for Mach numbers\) up to 1.8 but few years agd26] and claimed by Weiss to be incorrect
it definitely failed forM > 2. If corrections of higher order in [27]; there is no such upper bound Mffor which a solution
the gradients such as those provided by the Burnett equatiomxists. This result is closely connected with the second line
were taken into account, it was more or less accepted thatf thought as we shall argue below.
they would provide an improvement to the NS model for The standard method of solving the Boltzmann equation
M < 1.8 but they would worsen the results figh=2. is based on a perturbation scheme known as the Chapman-
On the other hand, the early 1950s also witnessed an efenskog method28]. The essential idea consists of expand-
tirely different approach to the study of shock wave profilesing the single particle distribution function around the local
when, rather independently and using different ideas, Graéquilibrium state in powers of Knudsen’s paramet&),(
[13], Wang-Chand 14], and Mott-Smith[15] attempted to  which in the case of shock waves is defined as the ratio
solve Boltzmann’s equation describing the time evolution ofbetween the mean free path and the thickness of the shock.
a dilute monatomic gas. As is well known, the solution toFor weak shocks this number is smaller than 1, so that it is
this equation in the so-called hydrodynamic regime islogical to expect that the first correction to the local equilib-
equivalent to the NS model, except that the transport coeffirium state that leads to the NS equations is good enough to
cients are obtained in terms of molecular parameters characerrectly describe shock wave profiles. In spite of the results
teristic of each gas. After these works were published a hosdlready mentioned above, namely, that the NS regime is sat-
of papers appeared in the literature mostly devoted to assedsfactory only for weak shocks, many authors in the field set
ment and clarification of the main ideas behind this kineticout to explore how the next order corrections to such a pa-
theoretical way of viewing the problem. Nevertheless, andameter would modify the existing results. This has led to a
very likely as one should have expected, the general trend dbng standing and controversial question concerning the va-
the results obtained with the NS continuum model remainedidity and usefulness of the Burnett and super-Burnett equa-
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tions in the description of shock wave profiles. Although firstin the calculation of shock wave profiles in dilute gases for
sketched by Wang-Chang in his paper on the subjjet} it Mach numbers greater than or equal to 2. Two questions, at
was throughly examined by Fodl29] and later by many least, jump to the fore. The first one is concerned with the
other workers in the fiel@30—34. The conclusions of these improvement in the structure of shock waves. The second
reports are not altogether consistent with each other. Fg®ne is related to the justification of such an improvement, if
some authors the Burnett corrections to the NS regime aré truly exists, based on more basic principles. Indeed, it
important, for example Chapmaet al. [32—-34 reported Would be hard to accept that the Chapman-Enskog method,

agreement with Monte Carlo results upNb~50. We shall which provides a power series for the distribution function in
come back to this question later. terms of the magnitude of the gradients in the system, pro-

Finally the third line of thought has been to use Enskog’sVideS reliable results for strong shock waves. In this paper

kinetic equation, valid for a dense fluid of rigid spheres, toWe Shall be solely concerned with the first question. For that
examine shock wave structures in both the NS and the BuRYfPose we shall integrate the f_uII hydrodynan"_nc equations
nett regimeg 35,36, Although this work is somewhat for- in the nonlinear Burnett approximation for a simple dilute
eign to the subject of this paper the results that have bee$@S and shfow that the shock v;/la\{e profiles |n'tL1e range cov-
obtained merit a closer examination especially because orfg€d in Ref[47] are substantially improved, with respect to

should expect compatibility with those obtained for the di-P0th the NS model and Holian's theory. The second ques-

lute gas. t|on,.wh|ch became quite rele_vant in the light of the results
Calculation of shock wave profiles in dilute gases as welPPtained here, will be dealt with elsewhere.

as in dense fluids has also been greatly benefited by the ag- 10 Present the results we have structured our paper as

vent of modern computational techniques such as the dired@!oWs. In Sec. Il a statement of the problem will be given.

simulation Monte CarldDSMC) method[37], nonequilib- Section Il is devoted to a discussion of the methods used in

rium molecular dynamicéNEMD) [38], powerful numerical solving the nonlinear set of differential equations as well as

methods for integrating linear and nonlinear differentialthe results obtained with the DSMC method. Section 1V is

equationg39—43, and computer algebrig3]. NEMD cal- concerned with a discussion of the relevant mathematical

culations for shock waves were published in 1980 by HoliarSPECtS of the problem. Finally, in Sec. V we will give some

et al.[44]. There, a steady strong shock wave propagating iffoncluding remarks.

a dense fluid was simulated and the relevant profiles com-

pared with those obtained from the NS continuum model. Il. THE PROBLEM

The main results that emerged from that work were later Our interest lies in the study of a traveling wave that

brought into a more refined theory by Holian himself. This . . : -

theory is based on the idea that along the direction of prop propagates with constant velocityassuming that wo equi

ation of the shock wave there are two different tem era_ibrium states are possible. For simplicity we will assume
9 S . PETaihat we are dealing with a plane wave so that the velocity of
tures, one along this direction and a second one in the pla

. . : : "Re perturbation, which we denote by u(x,t)i, has a com-
perpendicular to it. Since the viscosity and thermal conduc- onent along the direction, and that furthermore the veloc-

tivity depend on the temperature, it is conjectured Fhat the ty of the perturbation can depend only g@ndt. The equa-
should depend only on the parallel temperature. This CONjeG:. o that describe the evolution of the hydrodynamic

t_ure [45’4@’ now refer.red to as !—|ol|an S conjecturg, has de'variables are given by the conservation equations, which
fied any microscopic interpretatiqd7] but has provided an read

improvement in the agreement between continuum models
and numerical simulationgt6]. A breakthrough in this ap-
proach to the problem occurred in 1992 when Salomons and
Mareschal 48] used both NEMD and the DSMC method to
compute shock wave profiles in a dilute hard sphere gas in
the range &M =<134. The main objective of the work was iu(x t)+u(x,t) J
to investigate the accuracy of the Burnett equationsMor ot ’
>2 in a dilute gas by computing the fluxes present in the
gas, not the profiles obtained by a full hydrodynamic calcu- d d
lation. Their main result was that in such a regime and even Zrex D +ux.t) —=[p(x,Hex)]
at such largeM’s the improvement on Fourier’s law is sub-
stantial. Curiously enough, a few months later a communi- o uxp 9
cation by these authors and Holian’s group was published X ax X
[49] modeling shock waves in ideal fluids using Holian's
theory and exhibiting the improvement of this theory as comwhere p is the mass density?,, the xx component of the
pared with the NS model, leaving aside completely the prepressure tensoe the specific internal energy, aryg the x
vious claim about Burnett's approximation. This completescomponent of the heat flux. The explicit equations that de-
the description of the general background that inspired ouscribe the behavior of the hydrodynamic variables are ob-
work and which we now report in some detail in this paper.tained when the constitutive relations are given. They can be
A previous short Letter is already available in the literaturethe Euler equations, the Navier-Stokes-Fourier equations, or
[50]. the Burnett equations among many others. RE{x,t)

We shall here restrict ourselves to the discussion of what= (u(x,t),p(X,t), T(X,t),e(X,t),Py(X,1),0,(x,t)); then the
is really the importance of the Burnett constitutive equationgnterest is in finding traveling wave solutions of the form

d
ZrPX D+ [u(x,Dp(x,1)]=0, @

u(x,t)_ 1 9
ax  p(xt) ax

(P (2

(ax), ()
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¥ (x,t) = ¢(x—ct). Since the velocityc is assumed to be
constant then, provided that such a solution exists, it is pos-
sible to choose a coordinate system moving with velocity
so that the shock wave is stationary aliddoes not depend where C;, C,, and C; are constants. In the shock wave
on time. In the case of the Euler equations it is known that groblem it is assumed that there exist two equilibrium states,
continuous curve joining the two equilibrium points does notcharacterized by the fact that there are no gradients, so that
exist and it is necessary to consider weak solutions to th®,,=p, wherep is the pressure amgl,=0. Such equilibrium
equations. We again refer the reader to the mathematicatates are denoted as upflow and downflow states, corre-
literature that deals with such solutiofs1-53. Rayleigh  sponding to the higher and lower valueswfrespectively.

[54] and Taylor[55] showed that in order to have a smooth The constants can be determined in terms of any set of equi-
curve joining the two equilibrium points it is necessary to librium values, and the result can be written in the form
introduce the transport coefficients into the description of the

(G(X) + %UZ(X)> p(X)U(X) +Py(x) +0x=Cs, (9

shock wave. For example, if we use the Navier-Stokes- puly=ppUp=Cy,
Fourier(NSF) linear constitutive equations the viscosity and

thermal conductivity play a role and it is here that the infor- Pu -, Pp

mation about the intermolecular potential comes in. Accord- ?UU *Py :7uD+ Po=Ca,

ing to Liu [56], it was Stokes in 1848 who first pointed out

the need to introduce the transport coefficients in order to
have a continuous curve joining the two equilibrium points.
The Navier-Stokes-Fourier linear constitutive equations give

expressions foP,, andqy in terms ofp, T, u, and some of  Thjs set of equations constitute the well known Rankine-
their first-order derivatives so that the integrated form of thequgoniot jump conditions. When the values of the mass den-
conservation equations gives rise to two ordinary differentiakity, pressure, and velocity at either the upflow or downflow
equations with boundary conditions, which have been studstate are given then the values at the other equilibrium point
ied extensively[3]. But other relations such as the Bumnett can pe determined. Up to now Eq@l)—(10) are not re-
constitutive equations may be considered, and as we Wilkricted to the dilute case and they are valid for any intermo-
show here they turn out to be more adequate when largRcylar potential. For a dilute gas we have tipat nkT,
gradients are present such as happens in shock waves.  yheren is the number densityk Boltzmann’s constant, and

The problem can also be considered from the point ofr e temperature. Also, we have that 3/2kT for a gas
view of the Boltzmann equatiof22,57-59, which is more  \yithout internal degrees of freedom.

fundamental than studying approximate solutions to the
Boltzmann equations such as those provided by the
Chapman-Enskog method. In this case the single particle dis-
tribution function is assumed to be of the forffx,v,t) We begin by considering the Navier-Stokes-Fourier linear

=f(x—ct,v), wherev is the atomic velocity, so it follows constitutive equations that are obtained as the first-order term
that ¥'(x,t) = ¢(x—ct) and in particular the relevant mo- in the Knudsen expansion of the Chapman-Enskog method
ments correspond to a traveling wave. In the final section wé28]. In order to calculate the viscosity and thermal conduc-

will provide a discussion of the results of such an approachtivity we will consider the rigid sphere model. The main
reason to consider this model is that the interaction is known

and we do not have to determine the true interaction poten-
. . o ) ) _ tial (in case we were interested in experimental Hai@a

We are interested in describing a one dimensional stationgqgition, the mean free path is well defined and the model is
ary shock wave according to a continuum approach. Thengre akin to the ideas used by Boltzmann to deduce his
conservation equations of mass, momentum, and energy feiguation[28,60. For the case of a shock wave, the general

a one dimensional stationary system can be readily obtainegsyts[28] for the constitutive equations reduce to
from Egs.(1)—(3), namely,

1. 1,
eU+§uU +pyuy= eD+§uD +ppup=C;. (10

B. The Navier-Stokes dynamical system

A. The conservation equations

d P (x) 4 du (11
= X —_— _,
—[u(x)p(x)]=0, (@) o= POOT 3Gy
X
(x) 1 AdT (12)
au(x d Ox=—Ao—.
- dx
U005 == 255 7 (Pod (5)
w is the viscosity and. the thermal conductivity, which for
d au(x) d the rigid sphere model are given bg8]
u(x) =Lp(X)e(X)]= = Pyx———— == (Qy). (6)
X 2 SNON 12 2 172
_ 5¢, mKkT(x) o 75¢, [ k°T(X) 13
Equations(4)—(6) can be integrated to give T N 640 am ’
p(X)u(x)=Cq, (7) whereo is the rigid sphere diameter and to first order in the

Sonine expansion the coefficiergg andc, are equal to 1.
p(X)U2(X) + Py, =C,, (8) Exact values for them can be found in the book by Chapman
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and Cowling[28]. In this work we takec,=c,=1; the re- , 1 (s)
sults for the different profiles considered are not affected in a u* (s)= Tiﬁ— — 79— 14+U*(s) |,
measurable way if their exact values are used. 3(s) \U™(8)

It is convenient to express the differential equations in the
Navier-Stokes regime in reduced form and we will follow v 6 (3 3 1 L—u*(s)12
the definition given by Holiarat al. [49]. Moreover, we will 7 (S)_457132(s) 278" 507 31U (9]
also use their notation, which consists in denoting the quan-
tities at upflow by the subindex zero and the quantities at
downflow by a subindex 1. Accordingly, the reduced speed
u*(s) and temperature(s) are defined by

—ro[l—u*(s)]). (18

The system of two equations with two unknowns given by

5m KT(x) Egs. (18) has to be solved for certain boundary conditions
s=xll, |l=———= 1(8)=—>, which can be obtained from the Rankine-Hugoniot jump
12p00'2\/; m conditions given by Eqg.10). The result is given by
(14)
D , 5 1 7 3 5, .
u*(s)=u(x)/ug, 7= 0 U1:ZTo+ E Tl=§To+ 6 1670 up=1. (19

2 .
Polp

_ _ _ _ Notice that these boundary conditions are written in terms of
The integrated form of the conservation equations given by the reduced temperature in the upflow state. This quantity

Egs.(8) and(9) can be rewritten as is related to the Mach numbeM(), which is defined as the
ratio of the velocity of the shock at upflow and the adiabatic
Pl,= 7o+ 1—Uu*(s), (15 sound velocity at upflow, by the relation
3 .3 1 , . M= (20)
ET(S)+qX:§TO+ 5[1—u*(s)] +71o[1—Uu*(s)], 579
(16)

where the ratio of the specific heat at constant pressure di-
. 5. vided by that at constant volume is taken to be 5/3, as it
where P,=P,,/poU is the reducedkx component of the  ghoyid be for a classical gas without internal degrees of free-
pressure tensor anqﬁqu/poug the reducedk component  gom.
of the heat flux. To obtain Eq$15) and(16) the integrated It is a common practice in the literature to divide the first
form of the mass conservation equation, given by &,  equation of Eqs(18) by the second one and obtain only one
was used. Holiaret al.[49] chose the origin of in such a first-order differential equation, but it is also possible to treat
way that the reduced velocity at=0 gives the average of the whole dynamical system given by Eq&8) as is done
the upstream and downstream valuesubrand the solution  here. Since the calculations for such two dimensional dy-
of the equations that we will considéXS, Holian and Bur-  namical systems are simple and the results are well known
nety) depends on this choice. However, the profiles obtainegi3 13, we will mention only what we found. The upstream
for different choices of the origin come together when theycritical or stationary point (1) is an unstable node and the
are translated along, reflecting the fact that the equations downstream critical pointu;,;) is a saddle. This is, of
are invariant under the choice of the origin ®rThus, they  course, in agreement with known results and in fact it has
exhibit translational Symmetry. A similar behavior has beerbeen known for a |Ong time that there exists a unique differ-
noted in the shock prOf”es obtained by the DSMC methO(bntiai curve joining the critical points (ﬂO) and (U1:Tl) [3]
[37]. In the mathematical literature a curve connecting two critical
The governing equations for the Navier-Stokes regime ar@oints is referred to as a heteroclinic trajectory so we will
obtained by calculating;, andgy from Egs.(11) and(12)  adopt this terminology. Following Holiaat al. [49], we as-
and by direct substitution of these expressions in E§S.  sume that the upstream critical point is obtained when
and(16) we arrive at —o and the downstream one when-=. In this case and
due to the topological nature of the stationary points the
7(S) U2 or - x! . sol_ution curve must go from the gaddle to_the uns_table_node,
WO (s)u* (s)=7o+1—u’(s), which becomes a stable node since the integration with re-
spect tos goes in the negative direction, that $syaries from
3 45 3 L positive to negative values. The topological nature of the
2 Vo /N2 stationary points also provides us with a practical way to
27 1T (9T (8= 57t Z1-U(S)] obtain the solution numerically, a method used long ago by
Gilbarg and Paolucdi3]. In modern terminology it can be
+7[1-u*(s)]. 17 expressed as follows. One perturbs the downstream station-
ary point and integrates numerically towase> —oo; then,
Here the prime denotes the derivative with respectsto when the perturbed point is in the basin of attraction of an
Equations(17) can be solved for the derivatives of and r invariant set, the numerical solution will be attracted to it and
to give it will give an approximate solution to the problem, that is,
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0.34 regime the total pressure tensor, meaning the contributions
up to first order in the Knudsen number, is the sunP&?
and P with an analogous result for the heat flux. When
co=u(x)i the result forPNS=pP®+ p(1) reduces to the ex-
0.29 1 i pression given in Eq€11), and similarly for the heat flux.
T The contribution to second order in the Knudsen number
or the third-order term in the Chapman-Enskog expansion
024 - | has been calculated by Burn¢@l] (see also Chap. 15 in
' Ref.[28]) and the results can be expressed in the form
2 2 - 2
J 7 n) Do, == MW===
019 t - A=, —Aet+w,— | = e— e[ +wg—
P w1 5 Aet w, 0 Dte 2Vcy-e w3pTVVT
; /.L2 ,U«2 M?_
‘ ‘ : » +w;——=VpVT+w VIVT+wg—e &
0144 06 0.8 1 “ppT ' P SpT? 6pT
u* 2

FIG. 1. Orbits in theu*-7 plane forM =2 and different initial
values. Squares, critical points; solid line, Navier-Stokes; dotted
line, Burnett; crosses, initial points.

2(D
q@= 01;L—TAVT+ GZ%KD—?VT—V%VT]

2 2 2
o, vpero,lv.ero T vT.e (23
o : . pT p pT

the heteroclinic trajectory will emerge. Holiagt al. [49]

noted that it was sufficient to perturb the downstream VelOCWhereeEﬁ and the action of the operatdr,/Dt can be

ity by making it a little higher than its asymptotic value in ound in Egs.(15.2.8 and(15.2.9 of Ref.[28]. The coeffi-
order that the perturbed point be in the basin of attraction OLientSw and ¢ are dimensionless numbers which are known
an invariant set, although they reported the calculations °n|¥or figid spheres and some other modg8]. In terms of the

for 7p=0 (M=c). On the other hand, other authd@5] | ; : S -

. educed variables given by Ed.4) and usingcy=u(x)i, the
and we ourselye§47] have used the procedure by Holian dimensionless expressions f@2Y=PO+pPM + P and
et al. to numerically generate the profiles for finite Mach gy_ 04 oW+ @ tumn out to be given b
numbers and in fact the same procedure worked out for thé =G T oA W u g y

Burnett equation§s0]. Figure 1 shows the integral curves of

BU *
the dynamical system given by E@L8) for different initial pBU*— P _T_ \/;d_qu [2w1/3— 14w,/9+ 2w/9]
values andM =2.0. In this case we have also considered **  pous Uu* ds ! 2 6
initial conditions far from downstream to show that the so- du*| 2 q 42
lutions generated numerically are attracted to the heteroclinic (_u) _ Ew u—(ru*) |+ o ar
trajectory whose numerical approximation corresponds to the ds 37%s| ds 3%ds?
orbit generated by the initial condition that is very near the N 5 N
upstream critical point. +Ew U_E(T/u*)d_T +E 5 d_T ou
3747 ds ds 3 rlds/ | 16"
C. The Burnett dynamical system BU
The Chapman-Enskoi@8] expansion generates the con- BU*= L3:|[91_802/3+295]<d_u> (d_7>
tributions to the fluxes at different orders in the Knudsen Polo ds/\ds
number. The zero-order term in the Knudsen number, which > d2u*  26.u* du* d N
corresponds to a nonviscous fluid, gives the following values +2[0,— Op]T—— I helchall —( r/u*)]—,
for the pressure tensor and heat flux: 3 ds’ 3 dsds 16

PO=pl, =0, A 4
where for simplicity we have omitted tleedependence af*

wherel is the unit tensor. Substitution of the previous con- L .
stitutive relations in the conservation equatigfs-(6) gives andr. Substitution Of. Eq(24) n Eqs.(_15) and(16) leads us
to a system of two differential equations of second order for

the Euler equations. To first order in the Knudsen number,”, . . :

which corresponds to the second-order term in the Chapmar_lr'- andr, a systgm that is equivalent to a fLrst-order system

Enskog expansion, the corresponding expressions are 1N four dimensions. In terms ofy1(s)=u’(s), ya(s)

=7(s), Vys(s)=u*(s), vya(s)=7'(s), the first-order
o system can be written as

PU=—-2uVc, qV=-AVT, 22

S 2 y'(9)=Fy(s). 7o) 25

where the double overbar denotes the symmetric tensor, the

overcircle denotes the corresponding traceless tef&®ly  where the prime denotes the derivative with respectdad

and ¢; is the hydrodynamic velocity. In the Navier-Stokes the vector field~(y) is given by



PRE 62
Fi(y,70)=Y3, Fa(Y,70)=Va,
i 3 4 16 , 8 16,
3(Y, To)—m gTo)h— gToyl §Y1— gyl
8 8 8
+ §yf— 3Yy2 T 5Y1Yay2— y3y4Yi( 01— 592
2 2
+ §03+ 205 + §y103y3y2 y
1 16 16 16 )
Fa(y, 7o) :m g ToY1Y2 T g ¥1Y2~ gViYe
16 16
- 3)’34” gylyg/ZYSWLylngst(yy 7o)
—Y5(Y1Y2C1+Y35C) — YaY2(Cy+Cs)
+Y3YaY1Ya(CotCy) |, (26)
where
2 14 2 2
C1=§w1—3w2+ 5(1)6, sz_ng,
(27)
2 2 2
03=§w3, C4=§w4, C5=§w5.

The results forP}, and g} given by Egs.(23) are inde-

pendent of the interaction potential between the gas ato

except for the coefficients and # which can in principle be
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IIl. SIMULATIONS AND NUMERICAL METHODS

In this section we describe the results coming from the
numerical calculations. Two main approaches are used. First
we used Adam’s method with a tolerance of value o
solve the differential equations given by E¢85) and(26).

A comparison of the ensuing results with other methods,
such as the Runge-Kutta and the backward differentiation
formula, has been carried out befd#7,50 in the case of

the Navier-Stokes equations and the Holian theory. We will
not describe these numerical methods further since they have
been considered in detail in the literatiB9—-47. The sec-

ond approach was to explore the direct simulation method as
implemented by Bird62]. There are other variants of the
DSMC method, such as Nambu’s method, but we decided to
use Bird’'s implementation since it is presently more ac-
cepted and it has been validated with experimental data
[63,64). A comparison between Bird’s and Nambu’s meth-
ods and questions regarding the convergence of both meth-
ods to a solution of the Boltzmann equation are available in
the literaturg 37,65. Salomons and Marescha8,49 men-
tioned that the results from DSMC and NEMD are similar, a
fact that we have corroborated fi =134. Therefore, we

will mainly discuss the DSMC results.

Due to the advent of the computer, rather detailed infor-
mation can now be obtained and analyzed. In particular, in-
formation about the distribution function can be obtained
from both experiments and DSMC simulatiof®7,64,68.

We will compare the velocity and temperature profiles but
higher order moments can also be considered, as was done in
part by Salomons and MarescHdl8], who compared the

méscous pressure tensor and the heat flux with numerical

simulations. In the literature it is usual to take the shock

computed for any interaction potential. In fact accurate Va|_th|ckness as a criterion to assess different theories and simu-

ues are available for Maxwell molecules and rigid sphere
[14,28. For rigid spheres, the explicit values used in this

work are the following:

0w,;=1.014X4, w,=1.014X2, w3=0.806X3,

(1)4:0681, (1)6:092&( 8,

3 45
ws=5 X 0.806-0.99, ;=X 1.035,

45
02:§X1035, 03:_3X 103,

105 3
0,=3X0.806, 6#5=|——Xx0.918+Xx0.806-0.15] / 3.

4 2
(28

lations; although a more interesting definition used for such

comparisons is the asymmetry factor. However, these defini-
tions depend only on the velocitior the density profile,
which we believe has only partial information. Instead, in
this work we explore the orbits in “phase space,” giving us
the opportunity to see the information about both the velocity
and temperature profiles. Furthermore, the orbits do not de-
pend on the choice of the origin and so one does not have to
decide between the different choices that are available in the
literature. For the Burnett dynamical system we will give
different projections of the solution curves since the orbits
are in a four dimensional space, in contrast to the orbits of
the Navier-Stokes equations which are two dimensional.
There are other numerical methods available to solve the
Boltzmann equation such as Nordsiek’'s meth®d-69; we
will give some of the results of the method for the shock
wave problem. Also, we have discrete velocity mod@B—
72], such as the Boltzmann lattice gas or cellular automata
which are very efficient from a computational point of view

As in the previous case, the idea of perturbing the downbut we do not provide a comparison with them.

stream critical point by making the velocity slightly greater

We have done calculations at a Mach number of value 2

and integrating to the upstream critical point is also appliedand the results are given in Figs. 2—9. Figure 2, which gives

for the dynamical system given by Eq&5) and(26) and we

the orbits forM=2 as predicted by different theories and

will come to this point later on. In Fig. 1 the projection of the DSMC, readily shows that the projection of the orbit given

solution curves in ther*-7 plane is given foiM =2, while

by the Burnett equations in the' -7 plane are by and large in

some details of the numerical methods used are given in thieetter agreement with the DSMC results. It is interesting to

next section.

note that the Navier-Stokes and Holian theories give identi-
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FIG. 2. Orbits in theu*-7 plane forM=2. Squares, critical o o )
points; solid line, Navier-Stokes; dotted line, Burnett; circles, FIG. 4. Orbits in ther-7’ plane forM=2. Solid line, Navier-
DSMC; diamonds, Holian theory. Stokes; dotted line, Burnett; circles, DSMC; dash-dotted line, Ho-

lian theory.

cal results, a fact that can be understood by claiming that th oth the Navier-Stokes and the Holian theories. However,

Holian theory is a reparametrization of the Navier-Stoke . ; o ;
equations bﬁt as exgected differences between these tvy&e dispersion exhibited by the DSMC data is not around the
' ' ! rg_rltical point as expected; but notice that the difference is

theories will become apparent in other planes. The same co Very small. There are several possible reasons for @hishe
clusion, a better agreement on the whole of the Burnett equ i_rs'El is to .consider it as an ir?dication that the heteréclinic
tions with DSMC, can be obtained when comparing the pro-

jection of the orbits in other planes as shown in Figs. 3_5'trajectory does not existp) the second would be that the

Notice that the derivatives ai* and r for the DSMC. data _Pstream critical point has some structure, perhaps similar to

. . he one given by the Burnett equations, and that the DSMC
were evaluated using centered differences. Furthermore, thtr%ethod is unable to capture the detaity:a third is that it is

velocity and temperature profiles given in Figs. 6 and 7 show ecessary to consider biager boxes in the computational
again that the Burnett equations are on the whole in bette? y 99 P

agreement wih he DSMIC cata, and In hese figues tngCoeme, o 1l e fourh = bt necessary o
choice of origin is taken according to Bif@7]. 9 ' P

bilities. As pointed out by Bird37] the results obtained by

While the previous comparison shows that the Burnetrhis code are not very good if very large boxes are taken; we

equations are better when compared with DSMC it is Conveﬁave indeed corroborated this fact by considering larger
nient to carry out a more detailed comparison near the Critiboxes On the other hand. we have alyso consideregd Ior? or
cal points. Figure 8 shows an expanded view near the up: ' ' 9

stream critical point, where the DSMC data are nearer t&|mes and seen that the dispersion is not substantially

0.05
0.025 T
* 9
u 0.0396 g
-0.025
0.0292 B
’
-0.075 T
0.0188 g
0125 0.0084 1
-0.175 L L -0.002 : L L
042 0.62 % 0.82 1.02 -0.175 -0.125 " -0.075 -0.025
U u
FIG. 3. Orbits in theu*-u*’ plane forM =2. Solid line, Navier- FIG. 5. Orbits in theu*'-7' plane forM =2. Solid line, Navier-

Stokes; dotted line, Burnett; circles, DSMC; dash-dotted line, Ho-Stokes; long dashed line, Burnett; circles, DSMC; dot-dashed line,
lian theory. Holian theory.
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FIG. 6. Reduced velocity profiles versus the reduced length for
M=2, u* vs s. Solid line, Navier-Stokes; dotted line, Burnett;
circles, DSMC; diamonds, Holian theory.

FIG. 8. Behavior of the orbits in the*-+ plane near upflow for
M=2. Squares, critical points; solid line, Navier-Stokes; dotted
line, Burnett; circles, DSMC; diamonds, Holian theory.

changed. Pham-Van-Diept al. [31] modified a code by ,

Bird, claiming that there is a truncation error for the tempera-{N€re is a one-to-one correspondence between the number of
tures and this could explain the behavior observed here. Aimulated molecules and the number of real molectses
similar behavior of the DSMC data is shown at the down-&/S0 Ref[37]). If DSMC simulation fails to reach one of the

stream critical point and is given in Fig. 9. Notice that the Critical points it may be an indication that a heteroclinic tra-

conclusions previously mentioned remain valid on the whold€Ctory does not exist. However, to be sure that this is the
and we would like to point out that the differences found aretase, one must reduce the transverse dimensions of the simu-
about the expected accuracy when using single precisiollion Pox, taken as 1 frby Bird [37], so that the numbers
arithmetic. Nevertheless, it seems strange that the fluctu&f Simulated molecules and real molecules are approximately
tions are not around the critical points. Pham-Van-Diepl. equal. Such considerations would lead us to a major change

[31] mentioned also that the velocity profiles are not affected” Bird's code, a task beyond the scope of this paper. Notice
by the truncation error found by them, although the DsMcthat, even if the dispersion of the DSMC data is around the
velocity profiles obtained by us clearly exhibit a dispersionc'itical point, its analysis when one can ascribe a physical
that on average is below the upstream critical point. As gn€aning to it may give some information regarding the ex-

consequence of this behavior we have been unable to Calcbs_tence_ of a heterocli_nic trajectory or the structure of an at-
late the asymmetry factor with confidentzee below: tractor in case there is one. It seems that the DSMC method

Garcia and collaboratorf¥3—75 have shown that fluc- and the NEMD method are by their nature unable to provide
tuations in DSMC results can have a physical meaning if

0.3118

0.305
T

0.265

03117 -

T [e]
0.225
0.185
3 0.3116 ‘ ‘ : :

0.145 0.43735  0.43745 043755  0.43765  0.43775

u*

FIG. 7. Reduced temperature profiles versus the reduced lenght FIG. 9. Behavior of the orbits in the*-7 plane near downflow
for M=2, 7 vss. Solid line, Navier-Stokes; dotted line, Burnett; for M=2. Squares, critical points; solid line, Navier-Stokes; dotted
circles, DSMC; diamonds, Holian theory. line, Burnett; circles, DSMC; diamonds, Holian theory.
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FIG. 12. Projection of the orbit for the Burnett dynamical sys-

FIG. 10. Velocity profiles for the Burnett dynamical system at atem in theu*- plane for a Mach number of value 2.75. Solid line,

Mach number of value 2.75.

Burnett; square, downstream critical point.

clues about the existence of a heteroclinic trajectory in the
mathematical sense, but this point needs further elucidation.
With Adam’s method we have, of course, the restriction of

0
pn(X)dx

Q,(L)= ; (29

studying finite size boxes and in practice we have been able

to carry out the integration up &= —10°. In this case the
behavior of the orbits is not very interesting but represents a

test for the robustness of the numerical method employedvhere
For the DSMC method the boxes considered are about 300
mean free paths. It is also interesting to notice that in some
cases the evidence for the nonexistence of a heteroclinic
curve becomes apparent at large scales or through a closer ] ] ) ]
inspection of the data, as shown in Figs. 10—13 for the BurHere p is the mass density and the subscripts refer to its
nett dynamical system. The questions previously raised arg2lués downstream and upstream. In practice, one has to use
irrelevant if one is interested only in the overall form of the @ finite L to calculate the asymmetry factor but the present
profile, and it is our thought that at present questions regard€sults taken from DSMC simulations are not of enough
ing the existence of the heteroclinic trajectory can be tackle@uality to calculateQ,(L) with confidence. In Fig. 14 we
only with theoretical methods. have considered the values reported by Pham-Van-Diep

The asymemtry factor@,) is defined by taking.=c in €t al.[31] for rigid spheres. On the other hand we have pro-
P vided the values for this quantity using the Navier-Stokes,

L
fo [1- po(x)]dx

o) =2X_P0. (30
P17~ Po

1.001 T T 0.085
0.0825 i
*
u T
1 ] 0.08 | 1
0.0775 |
! L L 0.075 L
0'999_30 -80 —40 -20 0 0.987 0.997 1.007
*
S u

FIG. 11. Velocity profiles for the Burnett dynamical system at a
Mach number of value 2.75.

FIG. 13. Projection of the orbit for the Burnett dynamical sys-
tem in theu*-7 plane for a Mach number of value 2.75 near upflow.
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FIG. 14. Asymmetry factor versus the Mach number. Solid
circles, Burnett for rigid spherggresent resulis diamonds, Holian FIG. 15. Orbits in theu*-7 plane for a Mach number of value
theory for rigid spheregpresent resuljs triangles, Navier-Stokes 134. Squares, critical points; solid line, Navier-Stokes; dot-dashed
for rigid spheregpresent resulys solid line, Navier-Stokes for the line, Burnett; circles, DSMC; diamonds, Holian theory.
Maxwell model(from Alsmeyer{7]); dotted line, Nordsiek method
for rigid spheres(from Alsmeyer[7]); dashed line, experimental out before, we do not think that the calculation would be
values (from Alsmeyer [7]); squares, experimental dafdrom reliable since we do not get any structure for the calculated
Garenet al. [76]); open circles, DSMC for rigid spheredrom  orbit; in fact, a closer inspection reveals that the derivatives
Pham-Van-Dieget al. [31]). become very large. On the other hand, Grad’s method does

) ) ) _ not give structure for Mach numbers greater than 1.65, so the
Holian, and Burnett equations. Most of the data included inguestion that remains is if one would expect to have structure
this figure were taken from Fig. 8 of the work by Alsmeyer for g Mach numbers as happens with the Navier-Stokes
[7] but we have restricted the Mach numbers to values lowegquations. This question can be settled in the context of the
thanM,, which is the Mach number at which the upstreampgj|tzmann equation and not using its approximations. Al-
critical point changes from an unstable node to a satiie  though we shall comment on this issue later on, we would
next section The reason is that in this region we think that |ike to make an estimation of the magnitude of the quantities
the results obtained with the Burnett equations are reliablg,yolved for strong shock waves. Assume that=6.6
for calculating the asymmetry factor or the shock thickness, 10-26 kg and that the conditions at upflow correspond to
In addition we have included in Fig. 14 the experimental datastandard valuesT(=300 K, p=1 atm, or about 10 Pa),
of Garenet al.[76]. The conclusion is the same as advancednen the sound velocity is equal to 323 m/s and the number

before by Alsmeyef7] and otherg31] in the sense that the density is about 2.8 1675 m~2. The question that we ask is,
Burnett equations are better than the Navier-Stokes equations

for M=<2, although we think that there is a risk in conclud- g5
ing the superiority of a theory based on only one number. ..
Coming back to Fig. 10 one may be tempted to calculate
Q,(L) for L=20 for the Burnett equations, but the result is
unreliable since there is no structure for the calculated orbit;
the same remark applies to the shock thickness especially ¢
higher Mach numbers.
In a previous communicatiofb0] we provided the veloc-

ity and temperature profiles predicted by the Burnett equa- 0.005 -
tions forM = so it is instructive to see the projection of the
solution curve in ther*-7 plane. The calculations were done
for M=134 and the results can be seen in Fig. 15. Once
more, the Burnett equations give on the whole a better de
scription when compared with DSMC results. However, as
we mentioned beforgs0], the orbits have a terminal point as
clearly shown in Fig. 16; this result can be understood by

claiming that the local flow cannot be extended to all the real_o' %.95 o.§75 1
numbers[50]. At this stage we remind the reader that the *

integration is carried out in the negative direction. Since the

orbit terminates, we have evidendgut not proof that there FIG. 16. Orbits in theu*-7 plane for a Mach number of value

is no heteroclinic trajectory for the Burnett equations. It iS134. Squares, critical points; solid line, Navier-Stokes; dot-dashed
possible to calculate the shock thickness but, as we pointethe, Burnett; circles, DSMC; diamonds, Holian theory.
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FIG. 17. Orbits in theu*-7 plane for a Mach number of value FIG. 18. Behavior near the upstream critical point in tHer
134. Squares, critical points; solid line, Navier-Stokes; circles,plane for a Mach number of value 134. Squares, critical points;
DSMC; diamonds, Holian theory. solid line, Navier-Stokes; circles, DSMC; diamonds, Holian theory.

what is the temperature downstream? Notice that the numb%
densities at downflow can be at most four times the densit){.
at upflow[see Eqgs(10) and(19)], and so the dilute condition !
is expected to hold provided that it holds at upflow. Ror
=100 and using the Rankine-Hugoniot equations we obtai
that this temperature is of order<dl0® K. Clearly at such
temperatures the system will be ionized. For instance, if one

thinks of argon, it has an ionization energy of about IV. MATHEMATICAL ANALYSIS
15 eV (T=174000 K)[77]. Thus, the question of finding
structure for large Mach numbers for theories that describ% | aspects of the dynamical system given by E8s) and
mon{;\tomic gases is academic, but provides a stringent te 6). The main problem here is to find the conditions under
Ia:edgfgvrvir:trtggr?w”;séﬁéﬁ '\g/lggg El.m_l?ﬁgrfﬁ;tlg r:?;a;[iez) TF;IE;: ?[ which a heteroclinic trajectory exists joining the two station-

. ary points (179,0,0) and (4,74,0,0) [see Eq.(19)]. Al-
for argon, namely, the temperature at which 1% of the atom . . . )
are ionized, is 9500 K and 7700 K at pressures of Fa fhough this question belongs to the subject of global analy

and 16 Pa. respectivel§78]. Therefore since the pressure sis, i_t is important to deal f!r;t with local ar)alysis in order to
. ) 2 obtain the necessary conditions for the existence of a hetero-
at downfiow is abogt 100 atm<(10° Pa) ane does not need clinic trajectory. The study of any nonlinear phenomenon is
to worry about_the internal structure of the gas. . . a difficult task and the first question that jumps into one’s
It is interesing to note that foM =134 the dispersion

- o . ... mind is under what conditions a nonlinear system is equiva-
exhibited by the DSMC data near both critical points exhibitsj i '\ nder some criteria, to linearized equations, for which a
the expected behavidsee Figs. 17 and 1&nd is in con- i ' '

. . - . great deal of information is available. There are different
strast with the_ behavior f(_)und fon =2 (see Figs. 8 an(_j)g lines along which this question can be answered, and here we
The extensive comparisons performedvat 2 (see Figs.

2-7 show that the Burnett equations provide a substantia\f\lIII deal with only one of its features.
improvement over the Navier-Stokes equations when com-
pared with results from DSMC simulations. The evidence
based on the asymmetry factor provided by Alsmely@r In local analysis the interest is centered on the local be-
(see Fig. 1#shows again that the Burnett equations improvehavior around the criticalor stationary points and the ques-
on the Navier-Stokes equations for Mach numbers near Zlion to answer is under what conditions the local topological
Thus we can safely conclude that the Burnett equations areehavior of the nonlinear dynamical system is equivalent to
better than the Navier-Stokes equations for Mach numberss linearized version. Let(x) be a vector field defined for
smaller tharM . For large Mach numbers the Burnett equa-xeU <R, with values inR", whereU is an open subset and
tions again give a better agreement in ther plane al- ¢ is a real number or, in general, a vectorRf. Also, let
though the derivatives af* andr become large near upflow. x(s) denote a solution curve for the vector field so that
This means that the Burnett equations are no better than the

Navier-Stokes equations near upflow and the reason for this x'(s)=f(x(s)), (31
behavior is the lack of structure for the calculated orbit. We

do not know yet if there is no structure for the Burnett equa-where the prime denotes the derivative with respect ti
tions whenM>M_, but in case this is affirmative, one we assume that the vector field has continuous partial
would need to know if the Boltzmann equation has structuralerivatives inU, f.e C}(U), and if x, is a stationary

r M>M_. in order to conclude that the Navier-Stokes equa-
ons are better than the Burnett equationshNbrM .. Even

S0, the calculated orbit for the Burnett dynamical system is
folg the whole in better agreement with results from DSMC
calculations.

In this section we discuss some of the relevant mathemati-

A. Local analysis
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point of f_, we can consider the solutigr(t) of the linear- The unstable and stable vector spaces at each of the points
ization of f, aroundx,, which satisfies will be denoted byE, andEj} , i=0,1, respectively, and a
e similar notation will be used for the unstable and stable
y' ()=I100Ly(0], (32) manifolds at each of the points. Whgp is not a hyperbolic
where Jf (x,) is the differential off, at x,. Alternatively, point then the direct sum of the previous vector spaces at

the reader may think aff (x,) as the Jacobian matrix 6f ~ €ach point is noR" because one must introduce the “cen-
at xo, which will be denoted byA. The prime denotes the ter” vector spacee® [79]. For simplicity we will assume that

derivative with respect to The solution curves for the linear the stationary points are hyperbolic. The first remark by

system given by Eq32) are then given by79,80, Smoller means that eithew, NW; #&J, or Wi NW,,
t—tg)A #J. However, in the case of homoclinic trajectories, those
y()=expg'~9%y(ty), (33)  for which an orbit connects a critical point with itself, it is

h th Gati ¢ rix is defined in t tknown [84] that if the stable manifold intersects the unstable
V;'] ere t e7%x;8)onend|a ion g a matrix Is detinea 'ml em:f’ %manifold transversely, the dynamics can be very complicated
the sgne;{ I', 0 andy(to) ehnotes glny 9";‘*;? 'Orl'.'t'a ﬁon I_I (homoclinic tanglg so in the case of a heteroclinic trajectory
tion. S0 for linear systems the problem of finding the solu-q 5o me complications may appear unless the intersection of
tion curves is equivalent to the calculation of the exponential he manifolds is tangential. The second remark gives a crite-

of a .mitm(;’ and furthirmore thef type Qk:fjlelger;ve_llues of th&jon regarding the dimensions of the manifolds such that the
matrix A determine the type of possible solution CUNVesy i qclinic trajectory is “stable.” We will refer to this as

[79,80. It is also important to mention that the eigenvectors , oo . : u s
. : . . Smoller’s criterion, meaning that provided thét, "W,
corresponding to the eigenvaluesfofvith positive real parts 9 P o X

generate a subspace Bf called the unstable vector space *& then the heteroclinic trajectory is stable if divif )
EY. The eigenvectors corresponding to eigenvalues with +dim(W§1)>n. Finally, Smoller’s last remark is not very
negative real parts generate a subspace called the stable v@gportant for us since we will be able to calculate the dimen-
tor space and denoted . _ sion of the unstable and stable manifolds, for each of the
When all the eigenvalues dff (xo) have real parts dif- points, by evaluating the eigenvalues of the Jacobian matrix.
ferent from zerox, is a hyperbolic point and the Hartman = e will now apply the previous mathematical concepts
[79] (or Hartman-Grobmaii81]) theorem holds. This theo- and theorems to the Burnett dynamical system given by Egs.
rem establishes that for hyperbolic stationary poifiS]  (25) and(26). Let us first calculate the partial derivatives of

there exists a continuous invertible map, defined in a neighthe vector field given by Eq(26), which for the first two
borhood ofx,, which takes the solution curves of the non- components of the vector field can be calculated in a

linear system, given by E¢31), to those of the linear system  gstrajghtforward way. They read

given by Eq.(32). The theorem then gives us the conditions

under which the topological structure of the nonlinear system

around a stationary point is the same as its linearization

around the critical point. So for hyperbolic points it is D3sFi(y,70)=1, DaFa(y,70)=1, (34)
enough to study the linearization around a stationary point to

find the qualitative features of the solutions for the nonlineaiyhereD, = 9/dy, and all the other partial derivatives &f;
system around the point in question. Another important theoandF, are equal to zero. The other partial derivatives are a

rem that holds for hyperbolic points is the stable manifoldjittle more complicated to calculate, the results being
theorem[79], which states that for a hyperbolic critical point

(%g) there exist manifold$“surfaces™) W' and W®, called
the unstable and stable manifolds, respectively, with the J _ 207, 3 4

same dimension aB" and E®, respectively, such that they 1Fs(y,70)= 3y, 2o — Oyt 0)  3y12Ya(— O+ 64)
are tangential t&" andE*® at the pointx,. In the mathemati-

cal literature the stable manifold theorem is also found under 4 4

the name “Hadamard-Perron’s theoremi82]. For nonhy- + — +

perbolic points there is an analogous theorem to the stable 3Ya(= 02t 6a) y,*(— 0+ 64)
manifold theorem which bears the name of “the center mani-

2
fold theorem”[79,81,83. _ 154 _ 03Ys ,
We can now understand the following statement made by 212 \Ya(— b2+ 6)  y12(— 0o+ 04)

Smoller[51]; “ There is an alternate topological way of ex-

pressing the fact that two rest points are connected by an

orbit; namely, we can say that the stable manifold of one D,F3(y,70) = — 154 _ 207o
intersects the unstable mamfo_ld of the pther. If this situation ' 4y,y,3(— 0,4 6,)  3y1y,2(— O+ 6,)
is to be “structurally stable” (i.e., remain true under small

perturbations), then the sum of the dimensions of the stable N 87 4

and unstable manifolds must exceed that of the space. It is 2 - >

interesting that the entropy inequalities (24.4), allow us to 3Y2" (= 02+ 02)  3Y1y2™(— 621 04)
explicitly compute these dimensich§wo comments are 8 4y,
pertinent at this point, but we first introduce some notation in + —

order to make them simpler. Lgg andx, be critical points. 3Y,2(— 02+ 64) 3y, %(— 0+ 64)
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3ysysbs  4ysyab,
2y,%(— 03+ 04) Y22 (— 057+ 0,)

3Y3Yabs
Y22 (— Op+ 0,)

Y3Yabs
Y22 (— 0+ 6,)

340, N 4y46,

D3Fs(y, 7o) = —
3Fa(Y.70) 2Yo(=0,+04) Yo — 0,1 64)
B Y403 _ 3Yabs
Yo( =0+ 04) Yo — 02+ 64)
203y
Yi(— 02+ 04)°
15 3y36,
D4Fs(y,m79) = -
+Foly>70) 2y1\Yo(— O+ 6,)  2Ya(— 02+ 64)
4y36; _ 03y3
Yo( =02+ 04) Yo — 0+ 04)
~ 3ysbs
Yo(— 62+ 6,)°
DA sy 167, 16
174y, 70) = — -
9y,%(cotcs) 9y %(Ca+ca)
L 3% 16V
9y,%(cy+c3)  9y;%(cytCa)
B Y2C2F5(Y, 7o) 2)’2y3202
yi%(catc3)  yi¥(catca)
_ Y3¥aC2  Y3Y4aCy
yi4(ca+C3)  yi%(CytCa)
Y2C,D1F3(Y, 70)
yi(Cy+C3)
16 8ys
DyF 4y, m0)=— +
9y,%(CatC3)  9y1Vya(CotCa)
CoF3(Y, 7o) _ y3202 ya’cy

Yi(C2tC3)  y2(c,+cg)  ya(cptCy)

y5Cs Y2C2DoF3(Y, 7o)

y,2(Cy+C3) yi(Cat+c3)
DAF4(y,70)= 16\y, Y2C2D3F3(y,70)  2y5Cy
3al¥iTo 9yi(cy+cC3) yi(ca+c3) CotC3
2y,Y3C, Y4Co Y4Cy

_ylz(C2+Cg) yi(Ca+C3)  Yi(CatCa)’
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Y2CoD4Fs(y,70)  2yaCy 2Y,4Cs
D4Faly,m0)= - —
ya1(Ca+C3) ya(CatcC3)  ya(Catcy)
Y3Co Y3Cq

(39

y1(Cat+C3)  yi(Catcy)’

The Jacobian matrices at upflow and downflow states, de-
noted byJFUP andJF9°, respectively, can be obtained from
Egs. (34) and (35). Thus, the matrix elements dfF'P are
given by

JF{P=0, JF=0, JIFU=1,

JF{P=0, JFYP=0, JIFY=0, JFL=0,

8
IRRE=1, JF=— 35—
up_— 00 up_
IFs2 To( 04— 62)’ IFss=0,
15
JF3=

2\/7'_0( 04— 0,) ’

16 2 16 8 2
T To— 9 T~ 370C2/( 04— 65)

up_ °
IFai To(Cy+C3) ’
16
— 5 To—479C /(04— 0,) T
R E— . JFu=1e V70 ,
To(Ca+C3) CrtC3
JroC
JFUP—1s hi (36)

(04— 05)(CatcC3)”

For JF9° the first two rows are the same as P and the
other matrix elements are given by

128
3(579+1)%(0,—6,)’

do_
JF§)=

256

JF9=—
82 (—14r0+575—3)(5719+1)(6,— 64)°

120
(570+1) 147y~ 572+ 3(62— 6a)

32 127'002+ 3027'0_ 127'004_402_9C2+ 404
9 (Co+C3)(57o+1)( 02— 6,) '

JF§5=0, JF§=

64  46,+9c,—40,
"9 (Co+C3)(57o+1)%(0,— 0,)

g0 16 \2147y— 57'02-!- 3

4379 (5rg+1)(cytcy)’

30y147,— 575+ 3¢,

(62— 04)(579+1)%(CotCa)

JF

d
JFY=—

(37
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The eigenvaluesX) of the Jacobian matrix at upflow can 12.0
be obtained from Eq.36). It follows that

547040, 0)(Co+ C3) N+ 40575¢,\ 3 »
+ 737 96( 0, 6,) — 360, — 144c,+ 720]\ 2
+ 75(7207g— 1104\ + 754 384— 640r0) =0.

(38)

Re(x), Im()

Notice that in Eq(4) of our previous work50] we forgot to
include the factor 720 that appears in the term that multiplies 0.0
A2,
The eigenvalues of the Jacobian matrix at downflow are
the solutions of a fourth-order polynomial of the forag
+agh +ah’+aghi+a\t=0, where #8000 0.200 0.400 0.600 0.800 1.000

To
a9=1(196 608-327 680ry) \1479— 5702+ 3,
FIG. 19. Eigenvalues at downflow versug. Solid lines, real

a,=125952,+ 2964 480-%— 101 376- 998 400_3, parts of the eigenyalue_s; dashed lines, im_aginary parts of the eigen-
values. The zero imaginary parts of the eigenvalues are not shown.

_ 2 2
= (49 920,75+ 74 88375+ 23049, — 167 040y evaluated the eigenvalues for Mach numbers greater than

4192009, 73+ 187 20@- 72+ 33 40&~7a— 19 200, 73 M= 1.5 and incorrectly interpolated the results.
270 270 370 470 For upflow(see Fig. 2Dand for Mach numbers less than

— 17 280+ 83 52@, 7o — 23040, — 374 40075 aboutM = 2.69 the critical point is an unstable node and for
5 M>M¢ itis a saddle with dimE®)=2 and dimg")=2. So
—4992W, 75+ 2227479~ 22 270,70+ 8640, the upstream critical point has a bifurcationMt in which

3 3 the unstable node changes to a saddle. We have investigated
—2880@&;7o+ 144000+ 345655 such a bifurcation previously and found a limit cy€&], so
—72 000:278)\/m, that th(_a bifurpation may be referred to as a saddle-node—
Hopf bifurcation. Forr, less than 1 and greater than ap-

proximately 0.34 M =1.33), two eigenvalues are complex
and two are real. For€97,<0.34 (M>1.33) all the eigen-
— 474 66@,72— 104 49@, 70, values are complex. _ _

Results similar to those described above for the eigenval-
ues at the two critical points were reported by F¢28,87
for the case of the Maxwell model. Upstream the bifurcation
—15939,c537,— 16 875940273— 11 61092c27-§+ 816,c, at which the unstable node becomes a saddle appears in this
case atM =1.9[29].

az=— 7290, — 558 90,75+ 546 75@,75— 101 25@, 7,

a,=(—3712%,c575+ 11 610,C375+ 16 87H,C57y

+36 4500,C3 7o — 16 87H,C3 7+ 37 125),C4 75

9.0

+11 61094(:27'(2)_ 11 61092C3’T%+ 159%4C2’TO
+ 159%4037’0"‘ 810403"’ 37 12%402’7’3_ 8102C3
— 36 450,C, 79— 816,C,— 37 125,C, 75

<
+16 8759,C, 73+ 36 450,C, 70— 159%,C, 7 E
— 36 450,C473) 147y — 572+ 3. 39 g
o
In Figs. 19 and 20 the corresponding real and imaginary -so f .- 1
parts of the eigenvalues obtained from E@8) and(39) are [ ___---"7"
given. For the sake of clarity we have not included in the ,/’

graphs the points corresponding to zero imaginary part. It is H
seen from Fig. 19 that the downflow is a saddle with
dim(EY)=3 and dimg®=1. Also, for 7, less than -9.0 ! ! ! !
3/5 (M=1) and greater than approximatety=0.485 M 0.00 020 040 T 060 080 1-00
~1.1123) two eigenvalues are complex and two are real, ana 0

for 7<<0.485 (M>1.1123), all of them are real. In our pre-  FIG. 20. Eigenvalues at upflow versag Solid lines, real parts
vious communicationi50] we mentioned that they were al- of the eigenvalues; dashed lines, imaginary parts of the eigenvalues.

ways real but the reason for this discrepancy is that wé&he zero imaginary parts of the eigenvalues are not shown.
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Notice that for Mach numbers greater thih, and ac-  x(t) connects 0 and(6) ast varies from—o to +o [if
cording to Smoller's remarks mentioned previously, a StruC{dx/d¢)(0)>0]. More details are given in the work by
turally stable heteroclinic trajectory going from downstreampontgomery|[85].
to upstream is not expected, and this is consistent with both 1y, remarks are worth noting. The first is that the two
our numerical calculations and the existence of the limityitical points given by 0 andh() are the same fog=0,
cycle reported previouslf50]. However, a heteroclinic tra- \\hich corresponds ta,=3/5 (M=1) and we may take
jectory from upstream to downstream does not contradict. 35 7o. Second, we see that 0 is always a critical point
Smoller’s criterion. We have been unable to find evidence Oéccording to Montgomery but we can always make a trans-
the existence of such a heteroclinic trajectory using numeriration depending only on the Mach number so that one of the
cal methods. Notice that, in the discussion given by Mont-jtica| points is always 0. For example, if upflow is chosen
gomery[85], such a possibility was not mentioned, perhaps, ¢orrespond to 0 then the functidreonsidered by Mont-

due to the expectation that a curve going from upflow to ) B 3 3
downflow is not allowed because the heat flow goes fronPCMery can tze defined aﬁ(x'e)_F(X+_(1’§_0'0’0)'5
0) [x=yeR*" see EQg.(26)]. As we pointed outF has

downflow to upflow. In fact such an argument has been ad-

vanced to explain the instability of some numerical method&ontinuous partial derivatives of any order on a certain open
[44,49. In this respect it is interesting to notice that the set, which implies that is in particular a thrice differential

13-moment approximation yields a solution that goes fronfUrction on a certain open set. Also( 0)=(1-30.5—0/2
upstream to downstream, for Mach numbers smaller tha 15¢~0,0) has a nonzero derivative and furthermore
1.65, and so the argument could be used to invalidate thEh(6),0)=f(0,6)=0 [see Eq(10)] so condition(a) holds.
13-moment solution. This fact was pointed out by Grad him- e now need to know if conditiofb) holds. Takingr,
self but apparently it has been forgotten in the recent litera=3/> (6=0) in Eq. (38) we see thati =0 is a solution,

ture. In our opinion this point deserves further considerationWith multiplicity 1, of deff,(0,0)]=detdF"?|y_,)=0.
Notice that the eigenvalues are not affected by the specific

translation used to defirfein terms ofF. Furthermore, from
B. Global analysis Figs. 19 and 20 we see thafd) has a nonzero derivative at
#=0 and no other eigenvalue has zero real part, so that
Montgomery’s conditior{b) also holds.
We conclude that there exists a heteroclinic trajectory for
e Burnett dynamical system for Mach numbers greater than

While the local analysis of the Burnett dynamical system
given previously provides us with interesting information, it
is unable to answer the question about the existence and/%r

uniqueness of a heteroclinic; trajectory. Global analysis deali Although the upper limit is not known from the theorem
with such questions. There is a theorem by Montgon&sy ' . . o ’
our numerical calculations suggest that it is equaMg.

that focuses on such a question for the higher order gradiel:llhe mathematical concepts used by Montgomery rely on in-

expansions provided by the Chapman-Enskog method, so w : L
shall now discuss his results as applied to the Burnett equ Jex theory and the center manifold theorem. The reader in

tions. However, a note of caution must be given since thi%:re;éefo'r,‘\/lr;ﬁ;/":)?ngrqze\?virrk'{gﬂ]gh:hgtgotgf sbe Isssriiflelf re-
theorem deals only with the existence but not with the[51] and Conle%/’s moynograpﬂ86], y

uniqueness of the heteroclinic trajectory. . . : -
: ' . , Finally, we end this section by summarizing the results.
There is a first requirement to apply Montgomery's res’UItThere exists a saddle-node—Hopf bifurcation at upflow for
which consists in expressing the derivatives of higher orde ~2.69. In the case where<IM <M the upstream criti-

(second-order derivatives in the case of the Burnett equaéal oint is an unstable node and becomes a saddlatfor
tions) in terms of the derivatives of lower order. This part P

holds for the Burnett equations considered here and in fact i Mec, whereas'the_doyvnstrea_m crlpcal point is glvyays a
has been used to solve the two second-order differentijaddle' Smoller’s criterion for its existence is satisfied for

equations, provided by the Burnett equations, as a first-ord r’L"VI Ci.U(MB'ooz .thMontgomefryMs tmeorerr;)does r?Ot g:\ée 'g'
system in four dimensions. ormation about the range of Mach numbers where the Bur-

Montgomery’s main theorem is the following. We start ne_tt equgtions .have structure; howgver, our numerical calcu-
with the differential equation lations give evidence about the existence of structurévfor
e[1M.). So far we do not know if the Burnett equations
X have structure foM>M,, but we have found that the cal-
FTE f(x,0), (40) culated orbit does not correspond to a heteroclinic trajectory
in this case. We must not forget that for large Mach numbers
the question of the existence of a heteroclinic trajectory, even
where xe UCR", U is an open subset anftUx[0,1] for the Boltzmamj equation, is academi®ne may be
— R"is a thrice differentiable function that satisfies two con-€MpPted to consider the super-Burnett or higher-order
ditions: (a) f(h(6),8)=f(0,6)=0, with h smooth such that Chapman_—E_nskog_ expansions but, since Fhey are extremely
h(0)=0 and @h/d6)(0)#0, (b) ,(0,0) [the Jacobian ma- involved, it is desirable to look for alternativg88—90Q.)
trix of f(-,6)] has zero as a simple eigenvalue and no other
eigenvalue has zero real part. Furthermore) () is the
smooth function that gives the eigenvaluesfgf0,0) with
A(0)=0, itis assumed thadj/d6)(0)#0. Then there ex- One of the basic questions raised by the results obtained
ists e>0 and an open s&¢, 0eVCU, such that for& in this work concerns the intrinsic nature of the Burnett
e (0,e] there is a solution of Eq40) x(t) eV for all t and  equations. As has been pointed out in different contexts

V. FINAL REMARKS
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these equations are surrounded by uncertainty that arisélsat there are exampl¢$06] (Jeffery-Hamel flow in which
from various sources. The first one is their kinetic origin.for a fixed Reynolds number there are an infinite number
They arise when the Boltzmann equation is solved througticountabl¢ of solutions to the Navier-Stokes with stick
the Chapman-Enskog method and the solution is kept tboundary conditions. Of course, the hydrodynamic stability
terms of second order in the expansion parameter, namelgnalysiqd107] becomes a relevant choice, when there is more
the Knudsen number. Since this number is a measure of thian one solution, one of which is stable. Nevertheless, in the
gradients in the system, the Burnett equations are the nextse of Jeffery-Hamel flow there are regions in which there
order in the gradient corrections to the Navier-Stokes-Fourieexist more than one stable solution when a linear hydrody-
equations. Two problems immediately appear: the converamic stability analysis is usdd08].

gence of the series, which is suspect even for small Knudsen As we pointed out previousl{50], even when the solu-
numbers[91], and the fact that they are at odds with thetion to a set of equations existsuch as the Euler, NSF, or
second law of thermodynamics. Since 1942,93 it has  Burnett equationsit cannot be observed unless it is stable in
been known that they generate an entropy that is dependetite hydrodynamic sense, and several examples can be found
on the gradients and, further, their entropy production is notn the literature[107]. There are some partial results on the
necessarily positive definite. Other sources of uncertainly arbydrodynamic stability of the Euler equations for the so-
connected with the boundary conditions they must satisfycalled corrugational stability4,12]. Liu [56] used constant
and their frame dependence in rotatory coordinf®d$, but  transport coefficients in the Navier-Stokes equations to
we need not bother with all of them here. We wish here toshow, using the energy meth¢dl07], that the weak shock
comment on the first two of these aspects and on the possibleave profiles are nonlinearly stable. We do not know if these
derivation of the equations by other methods. Further discusresults remain valid when the transport coeffcients are not
sions of the Burnett equations and more references can hlmnstant, but probably this is the case. Other results about the
found in the work by Dorfman and van Beijer¢@5] and  stability of the shock wave profiles for the Navier-Stokes
elsewherd 96]. equations have been discussed by Sm8ét. For the Bur-

In their work on shock waves at high Mach numbers,nett equations Bobylev's instability109] has been, appar-
M,~50, Chapmaret al.[32—34 emphasized that, although ently, the only theoretical result concerning their hydrody-
the results obtained with the Burnett equations substantiallpamic stability. What was shown by Bobylev is that for a
improve those obtained with the NSF approximation, thesystem of Maxwellian molecules that is at equilibrium the
above mentioned theoretical questions concerning the BuBurnett equations are linearly unstable for longitudinal per-
nett equations need to be clarified. It is worth noting that inturbations.
their work they use the Burnett equations as obtained from Bobylev's instability was used to explain an anomaly
the Boltzmann equation using the Chapman-Enskog methodound by Chapman and collaboratdr33,34] in the code
Thus, indeed, the objections raised in the preceding sectiodeveloped by Fiscko and Chapmi@?2] to solve the nonsta-
hold for their results. In fact one could be even more drastidionary Burnett equations for the shock wave problem. The
and question the validity of the Chapman-Enskog expansioanswer to this problem given by Chapman and collaborators
itself in the presence of large gradients, which is certainly thevas to consider either a restricted or an augmented set of
case wherM >1 [14]. In fact the first thing we must deter- equations by throwing out some of the terms given by the
mine is if such equations are structurally the same regardlegurnett equations or by adding some terms which come from
of the method used for their derivation. Besides the Woodshe super-Burnett equations. As a result of this, Chapman
[94] derivations, there are othe[87] that appear to lead to and collaborators obtained a stable set of equations contain-
the same set as that obtained via kinetic theory. Neverthelesisig higher order gradients which are linearly stable for the
on account of all these facts we think that we have gained aquilibrium state and behave well for the shock wave prob-
better understanding of the Burnett equations, although thelem. Furthermore, their claim is that the shock wave profiles
place within an irreversible thermodynamic framework andobtained by the augmented system are nearly the same as
relationship with kinetic theory still remain obscuf@7—  those from the Burnett equations. The last remark is doubtful
100]. Due to the relative success of the Burnett equations, dt view of our own findings for Mach numbers greater than
least in the problem of calculating shock wave profiles forM¢, unless they are finding a solution that probably goes
high Mach numberg50], in the case of plane Poiseuille flow from upstream to downstream. This point, as well as the
[101] and in the case of a one dimensional strongly nonisolocal analysis of their augmented system for the stationary
thermal gag102], their here aspects emphasized deserve furease and the study of Bobylev’s instability for realistic po-
ther attention. tentials, deserve further study. Recerjthil 0] we have gen-

As far as we know, the boundary conditions for the Bur-eralized Bobylev's analysis for other models and argued that
nett equations remain an open problem. For the NavierBobylev's instability can also be understood as giving a criti-
Stokes equations stick boundary conditions are usually introeal Knudsen number above which the Burnett equations are
duced, but when Knudsen’s number is not small there existaot valid. In other words, Bobylev's instability appears for
a slip at the boundary and the calculation of the velocity“large” Knudsen numbers where the Burnett equations are
jump is still under current researdi65,103—10% In this  expected to be invalid, so the instability found by Bobylev
sense the boundary conditions for the Navier-Stokes equaloes not appear for small Knudsen numbers and the Burnett
tions are also an open question. The stick boundary condequations may provide an adequate description in this case.
tions can be used to solve the Burnett equations but of courde is interesting to note that if normal modes of the form
since they are of higher order the question of uniquenessxp(Qt’'+kx), wheret’ andk are a reduced time and a re-
becomes relevant. In this respect it is important to point outluced wavelengthl110], are used to perturb the equilibrium
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To conclude, we would like to comment on our view of

hydrodynamic stability analysis gives the following disper-the Burnett equations. In 1963 Gr&ti1 3] made the follow-

sion relation:
1803+ 6902k%+ 300 k% + 180 k*
4 2&)2
X E_ 5(94_ 02+ w3—w2)+ T

16
+ 5 (03— ,)(0,— 6,) QK8+ 45k*+ 30w,k®=0. (41)

ing remark: “On the other hand, the Burnett equations,
which also belong to this theory, are viewed with grave sus-
picion in most quarters and have never achieved any notice-
able success.” In the light of the present and other works
[7,101,102 we think that, although they may be seen with
grave suspicion, it is no longer true that they have not
achieved any noticeable success. The present work and oth-
ers show that they are successful at least in some range of the
relevant physical parameters. Bobylev’s instability provides

Comparing Eq(41) with Egs.(38) and(27) we see that the a range of Knudsen numbers for which the Burnett equations
stability of the equilibrium state and the eigenvalues at theyre valid[110] and therefore this instability can no longer be
critical points for the shock wave problem are determinedconsidered as a drawback. It would be naive to claim that
only by the coefficientso,, w3, 63, andé,. they are not susceptible to improvement, as a recent work
On the other hand, the problem of the structure for shockhows[101]. However, we think they provide some valuable
waves can be studied directly from the Boltzmann equationgs,its and therefore they can be used as a guide toward
itself and there indeed exist several works that deal with thi%leveloping a more complete theory capable of dealing with

|ssuet[57—f59,1ll It ?as k?[_een p:ov?dl tha;[j th_f Btoltztman? situations with large gradients where the Navier-Stokes
equation, for some interaction potentials, admits structure fog vion < ave exnected to be inaccurate.

Mach numbers near (weak shockgsbut the precise value is
not known[57-59. Grad[111] suggested that the solution
for the Boltzmann equation for the shock wave problem ex-
ists in the infinitely strong shock limit, and further work
along these lines has been carried out by Cercigeaai.
[22] and Caflisch[112]. As far as we understand, these ~We would like to acknowledge discussipns with and/or
works do not give a definite answer regarding the existenc@dvice from A. L. Garcia, P. Miramontes, E.ree-Chavela,

of structure for large Mach numbers. So the problem of theE. Pire, and F. Sachez-Garduo. F.J.U. wants to thank the
existence of a critical Mach number above which there is ndepartment of Physics of the University of Newcastle where
structure for shock waves, at the level of the Boltzmannpart of this work was done and the Universidad Awima
equation, seems to be open, as well as the “stability” of theMetropolitana and CONACYT for providing funds for his
solution, when it exists. We refer the reader to the literaturestay at Newcastle upon Tyne. This work was financed in part
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