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Shock wave profiles in the Burnett approximation

F. J. Uribe, R. M. Velasco, L. S. Garcı´a-Colı́n, and E. Dı´az-Herrera
Departamento de Fı´sica, Universidad Auto´noma Metropolitana–Iztapalapa, 09340 Me´xico Distrito Federal, Mexico

~Received 26 May 2000!

This paper is devoted to a discussion of the profiles of shock waves using the full nonlinear Burnett
equations of hydrodynamics as they appear from the Chapman-Enskog solution to the Boltzmann equation.
The system considered is a dilute gas composed of rigid spheres. The numerical analysis is carried out by
transforming the hydrodynamic equations into a set of four first-order equations in four dimensions. We
compare the numerical solutions of the Burnett equations, obtained using Adam’s method, with the well known
direct simulation Monte Carlo method for different Mach numbers. An exhaustive mathematical analysis of the
results offered here has been done mainly in connection with the existence of heteroclinic trajectories between
the two stationary points located upflow and downflow. The main result of this study is that such a trajectory
exists for the Burnett equations for Mach numbers greater than 1. Our numerical calculations suggest that
heteroclinic trajectories exist up to a critical Mach number ('2.69) where local mathematical analysis and
numerical computations reveal a saddle-node–Hopf bifurcation. This upper limit for the existence of hetero-
clinic trajectories deserves further clarification.

PACS number~s!: 47.40.Nm, 47.45.2n, 51.10.1y
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I. INTRODUCTION

The problem of computing the structure of shock wav
in fluids for a wide range of Mach numbers has been
perennial and debatable question in hydrodynamics. U
the late 1950s most of the work directed at elucidating
internal structure of a shock wave propagating in a fluid w
based on the Navier-Stokes model of the continuum. A
well known, this model is based on the essential idea that
viscous tensor and the heat flux generated in the fluid du
a perturbation are expressed in terms of the deformation
and the temperature gradient, respectively. The amoun
work pursued along this line is enormous, too much to
mentioned in detail here. Excellent reviews and further r
erences may be found in the literature@1–12#. The essence o
the results obtained with the Navier-Stokes~NS! model as
clearly summarized in Ref.@7# is that its validity is satisfac-
tory for realistic fluids for Mach numbers (M ) up to 1.8 but
it definitely failed forM.2. If corrections of higher order in
the gradients such as those provided by the Burnett equa
were taken into account, it was more or less accepted
they would provide an improvement to the NS model
M,1.8 but they would worsen the results forM>2.

On the other hand, the early 1950s also witnessed an
tirely different approach to the study of shock wave profi
when, rather independently and using different ideas, G
@13#, Wang-Chang@14#, and Mott-Smith@15# attempted to
solve Boltzmann’s equation describing the time evolution
a dilute monatomic gas. As is well known, the solution
this equation in the so-called hydrodynamic regime
equivalent to the NS model, except that the transport coe
cients are obtained in terms of molecular parameters cha
teristic of each gas. After these works were published a h
of papers appeared in the literature mostly devoted to ass
ment and clarification of the main ideas behind this kine
theoretical way of viewing the problem. Nevertheless, a
very likely as one should have expected, the general tren
the results obtained with the NS continuum model remai
PRE 621063-651X/2000/62~5!/6648~19!/$15.00
s
a
til
e
s
is
e
to
te
of
e
f-

ns
at
r

n-
s
d

f

s
fi-
c-
st
ss-
c
d
of
d

unchanged. The Mott-Smith results rated a little better th
those obtained with Grad’s 13-moment method or with
Chapman-Enskog method for solving the Boltzmann eq
tion, but the assumptions made are physically not very c
vincing. Once more, for further details we refer the reade
the vast literature available@15–24#. Three main lines of
thought that played an important role in the developmen
the subject arose from this effort. The first one is related
the existence of kinetic theory solutions to the shock wa
problem. In his 1952 paper, Grad@13# already asserted that
was unlikely that the 13-moment solution to the Boltzma
equation correctly determined the thickness of a shock w
for M'1.61. A few years later, Holway presented a pro
claiming that for Grad’s moment method of solvin
Boltzmann’s equation there exists a critical value
M ('1.851) for which no continuous shock solution is po
sible @25#. This statement was emphasized by Ruggeri onl
few years ago@26# and claimed by Weiss to be incorre
@27#; there is no such upper bound ofM for which a solution
exists. This result is closely connected with the second
of thought as we shall argue below.

The standard method of solving the Boltzmann equat
is based on a perturbation scheme known as the Chapm
Enskog method@28#. The essential idea consists of expan
ing the single particle distribution function around the loc
equilibrium state in powers of Knudsen’s parameter (K),
which in the case of shock waves is defined as the r
between the mean free path and the thickness of the sh
For weak shocks this number is smaller than 1, so that
logical to expect that the first correction to the local equil
rium state that leads to the NS equations is good enoug
correctly describe shock wave profiles. In spite of the res
already mentioned above, namely, that the NS regime is
isfactory only for weak shocks, many authors in the field
out to explore how the next order corrections to such a
rameter would modify the existing results. This has led to
long standing and controversial question concerning the
lidity and usefulness of the Burnett and super-Burnett eq
6648 ©2000 The American Physical Society
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PRE 62 6649SHOCK WAVE PROFILES IN THE BURNETT APPROXIMATION
tions in the description of shock wave profiles. Although fi
sketched by Wang-Chang in his paper on the subject@14# it
was throughly examined by Foch@29# and later by many
other workers in the field@30–34#. The conclusions of thes
reports are not altogether consistent with each other.
some authors the Burnett corrections to the NS regime
important, for example Chapmanet al. @32–34# reported
agreement with Monte Carlo results up toM'50. We shall
come back to this question later.

Finally the third line of thought has been to use Ensko
kinetic equation, valid for a dense fluid of rigid spheres,
examine shock wave structures in both the NS and the B
nett regimes@35,36#. Although this work is somewhat for
eign to the subject of this paper the results that have b
obtained merit a closer examination especially because
should expect compatibility with those obtained for the
lute gas.

Calculation of shock wave profiles in dilute gases as w
as in dense fluids has also been greatly benefited by the
vent of modern computational techniques such as the d
simulation Monte Carlo~DSMC! method@37#, nonequilib-
rium molecular dynamics~NEMD! @38#, powerful numerical
methods for integrating linear and nonlinear different
equations@39–42#, and computer algebra@43#. NEMD cal-
culations for shock waves were published in 1980 by Hol
et al. @44#. There, a steady strong shock wave propagatin
a dense fluid was simulated and the relevant profiles c
pared with those obtained from the NS continuum mod
The main results that emerged from that work were la
brought into a more refined theory by Holian himself. Th
theory is based on the idea that along the direction of pro
gation of the shock wave there are two different tempe
tures, one along this direction and a second one in the p
perpendicular to it. Since the viscosity and thermal cond
tivity depend on the temperature, it is conjectured that th
should depend only on the parallel temperature. This con
ture @45,46#, now referred to as Holian’s conjecture, has d
fied any microscopic interpretation@47# but has provided an
improvement in the agreement between continuum mo
and numerical simulations@46#. A breakthrough in this ap-
proach to the problem occurred in 1992 when Salomons
Mareschal@48# used both NEMD and the DSMC method
compute shock wave profiles in a dilute hard sphere ga
the range 4<M<134. The main objective of the work wa
to investigate the accuracy of the Burnett equations forM
.2 in a dilute gas by computing the fluxes present in
gas, not the profiles obtained by a full hydrodynamic cal
lation. Their main result was that in such a regime and e
at such largeM ’s the improvement on Fourier’s law is sub
stantial. Curiously enough, a few months later a commu
cation by these authors and Holian’s group was publis
@49# modeling shock waves in ideal fluids using Holian
theory and exhibiting the improvement of this theory as co
pared with the NS model, leaving aside completely the p
vious claim about Burnett’s approximation. This comple
the description of the general background that inspired
work and which we now report in some detail in this pap
A previous short Letter is already available in the literatu
@50#.

We shall here restrict ourselves to the discussion of w
is really the importance of the Burnett constitutive equatio
t
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in the calculation of shock wave profiles in dilute gases
Mach numbers greater than or equal to 2. Two questions
least, jump to the fore. The first one is concerned with
improvement in the structure of shock waves. The sec
one is related to the justification of such an improvement
it truly exists, based on more basic principles. Indeed
would be hard to accept that the Chapman-Enskog meth
which provides a power series for the distribution function
terms of the magnitude of the gradients in the system, p
vides reliable results for strong shock waves. In this pa
we shall be solely concerned with the first question. For t
purpose we shall integrate the full hydrodynamic equatio
in the nonlinear Burnett approximation for a simple dilu
gas and show that the shock wave profiles in the range c
ered in Ref.@47# are substantially improved, with respect
both the NS model and Holian’s theory. The second qu
tion, which became quite relevant in the light of the resu
obtained here, will be dealt with elsewhere.

To present the results we have structured our pape
follows. In Sec. II a statement of the problem will be give
Section III is devoted to a discussion of the methods use
solving the nonlinear set of differential equations as well
the results obtained with the DSMC method. Section IV
concerned with a discussion of the relevant mathemat
aspects of the problem. Finally, in Sec. V we will give som
concluding remarks.

II. THE PROBLEM

Our interest lies in the study of a traveling wave th
propagates with constant velocityc, assuming that two equi
librium states are possible. For simplicity we will assum
that we are dealing with a plane wave so that the velocity
the perturbation, which we denote byu5u(x,t) i, has a com-
ponent along thex direction, and that furthermore the veloc
ity of the perturbation can depend only onx andt. The equa-
tions that describe the evolution of the hydrodynam
variables are given by the conservation equations, wh
read

]

]t
r~x,t !1

]

]x
@u~x,t !r~x,t !#50, ~1!

]

]t
u~x,t !1u~x,t !

]u~x,t !

]x
52

1

r~x,t !

]

]x
~Pxx!, ~2!

]

]t
e~x,t !1u~x,t !

]

]x
@r~x,t !e~x,t !#

52Pxx

]u~x,t !

]x
2

]

]x
~qx!, ~3!

wherer is the mass density,Pxx the xx component of the
pressure tensor,e the specific internal energy, andqx the x
component of the heat flux. The explicit equations that
scribe the behavior of the hydrodynamic variables are
tained when the constitutive relations are given. They can
the Euler equations, the Navier-Stokes-Fourier equations
the Burnett equations among many others. LetC(x,t)
5„u(x,t),r(x,t),T(x,t),e(x,t),Pxx(x,t),qx(x,t)…; then the
interest is in finding traveling wave solutions of the for
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C(x,t)5f(x2ct). Since the velocityc is assumed to be
constant then, provided that such a solution exists, it is p
sible to choose a coordinate system moving with velocitc
so that the shock wave is stationary andC does not depend
on time. In the case of the Euler equations it is known tha
continuous curve joining the two equilibrium points does n
exist and it is necessary to consider weak solutions to
equations. We again refer the reader to the mathema
literature that deals with such solutions@51–53#. Rayleigh
@54# and Taylor@55# showed that in order to have a smoo
curve joining the two equilibrium points it is necessary
introduce the transport coefficients into the description of
shock wave. For example, if we use the Navier-Stok
Fourier~NSF! linear constitutive equations the viscosity a
thermal conductivity play a role and it is here that the info
mation about the intermolecular potential comes in. Acco
ing to Liu @56#, it was Stokes in 1848 who first pointed o
the need to introduce the transport coefficients in orde
have a continuous curve joining the two equilibrium poin
The Navier-Stokes-Fourier linear constitutive equations g
expressions forPxx andqx in terms ofp, T, u, and some of
their first-order derivatives so that the integrated form of
conservation equations gives rise to two ordinary differen
equations with boundary conditions, which have been st
ied extensively@3#. But other relations such as the Burne
constitutive equations may be considered, and as we
show here they turn out to be more adequate when la
gradients are present such as happens in shock waves.

The problem can also be considered from the point
view of the Boltzmann equation@22,57–59#, which is more
fundamental than studying approximate solutions to
Boltzmann equations such as those provided by
Chapman-Enskog method. In this case the single particle
tribution function is assumed to be of the formf (x,v,t)
5 f (x2ct,v), wherev is the atomic velocity, so it follows
that C(x,t)5f(x2ct) and in particular the relevant mo
ments correspond to a traveling wave. In the final section
will provide a discussion of the results of such an approa

A. The conservation equations

We are interested in describing a one dimensional stat
ary shock wave according to a continuum approach. T
conservation equations of mass, momentum, and energ
a one dimensional stationary system can be readily obta
from Eqs.~1!–~3!, namely,

]

]x
@u~x!r~x!#50, ~4!

u~x!
]u~x!

]x
52

1

r~x!

]

]x
~Pxx!, ~5!

u~x!
]

]x
@r~x!e~x!#52Pxx

]u~x!

]x
2

]

]x
~qx!. ~6!

Equations~4!–~6! can be integrated to give

r~x!u~x!5C1 , ~7!

r~x!u2~x!1Pxx5C2 , ~8!
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S e~x!1
1

2
u2~x! D r~x!u~x!1Pxxu~x!1qx5C3 , ~9!

where C1 , C2, and C3 are constants. In the shock wav
problem it is assumed that there exist two equilibrium sta
characterized by the fact that there are no gradients, so
Pxx5p, wherep is the pressure andqx50. Such equilibrium
states are denoted as upflow and downflow states, co
sponding to the higher and lower values ofu, respectively.
The constants can be determined in terms of any set of e
librium values, and the result can be written in the form

rUuU5rDuD5C1 ,

rU

2
uU

2 1pU5
rD

2
uD

2 1pD5C2 ,

S eU1
1

2
uU

2 D1pUuU5S eD1
1

2
uD

2 D1pDuD5C3 . ~10!

This set of equations constitute the well known Rankin
Hugoniot jump conditions. When the values of the mass d
sity, pressure, and velocity at either the upflow or downfl
state are given then the values at the other equilibrium p
can be determined. Up to now Eqs.~4!–~10! are not re-
stricted to the dilute case and they are valid for any interm
lecular potential. For a dilute gas we have thatp5nkT,
wheren is the number density,k Boltzmann’s constant, and
T the temperature. Also, we have thate53/2kT for a gas
without internal degrees of freedom.

B. The Navier-Stokes dynamical system

We begin by considering the Navier-Stokes-Fourier line
constitutive equations that are obtained as the first-order t
in the Knudsen expansion of the Chapman-Enskog met
@28#. In order to calculate the viscosity and thermal condu
tivity we will consider the rigid sphere model. The ma
reason to consider this model is that the interaction is kno
and we do not have to determine the true interaction po
tial ~in case we were interested in experimental data!; in
addition, the mean free path is well defined and the mode
more akin to the ideas used by Boltzmann to deduce
equation@28,60#. For the case of a shock wave, the gene
results@28# for the constitutive equations reduce to

Pxx5p~x!2
4

3
m

du

dx
, ~11!

qx52l
dT

dx
. ~12!

m is the viscosity andl the thermal conductivity, which for
the rigid sphere model are given by@28#

m5
5cm

16s2 S mkT~x!

p D 1/2

, l5
75cl

64s2 S k2T~x!

pm D 1/2

, ~13!

wheres is the rigid sphere diameter and to first order in t
Sonine expansion the coefficientscm andcl are equal to 1.
Exact values for them can be found in the book by Chapm
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and Cowling@28#. In this work we takecm5cl51; the re-
sults for the different profiles considered are not affected
measurable way if their exact values are used.

It is convenient to express the differential equations in
Navier-Stokes regime in reduced form and we will follo
the definition given by Holianat al. @49#. Moreover, we will
also use their notation, which consists in denoting the qu
tities at upflow by the subindex zero and the quantities
downflow by a subindex 1. Accordingly, the reduced spe
u!(s) and temperaturet(s) are defined by

s[x/ l , l 5
5m

12r0s2Ap
, t~s![

kT~x!

mu0
2 ,

~14!

u!~s![u~x!/u0 , t0[
p0

r0u0
2 .

The integrated form of the conservation equations given
Eqs.~8! and ~9! can be rewritten as

Pxx
! 5t0112u!~s!, ~15!

3

2
t~s!1qx

!5
3

2
t01

1

2
@12u!~s!#21t0@12u!~s!#,

~16!

where Pxx
! [Pxx /r0u0

2 is the reducedxx component of the
pressure tensor andqx

![qx /r0u0
3 the reducedx component

of the heat flux. To obtain Eqs.~15! and ~16! the integrated
form of the mass conservation equation, given by Eq.~7!,
was used. Holianet al. @49# chose the origin ofs in such a
way that the reduced velocity ats50 gives the average o
the upstream and downstream values foru! and the solution
of the equations that we will consider~NS, Holian and Bur-
nett! depends on this choice. However, the profiles obtai
for different choices of the origin come together when th
are translated alongs, reflecting the fact that the equation
are invariant under the choice of the origin fors. Thus, they
exhibit translational symmetry. A similar behavior has be
noted in the shock profiles obtained by the DSMC meth
@37#.

The governing equations for the Navier-Stokes regime
obtained by calculatingPxx

! andqx
! from Eqs.~11! and ~12!

and by direct substitution of these expressions in Eqs.~15!
and ~16! we arrive at

t~s!

u!~s!
2t1/2~s!u!8~s!5t0112u!~s!,

3

2
t~s!2

45

16
t1/2~s!t8~s!5

3

2
t01

1

2
@12u!~s!#2

1t0@12u!~s!#. ~17!

Here the prime denotes the derivative with respect tos.
Equations~17! can be solved for the derivatives ofu! andt
to give
a

e

n-
t

d

y

d
y

n
d

re

u!8~s!5
1

t1/2~s!
S t~s!

u!~s!
2t0211u!~s! D ,

t8~s!5
16

45t1/2~s! S 3

2
t~s!2

3

2
t02

1

2
@12u!~s!#2

2t0@12u!~s!# D . ~18!

The system of two equations with two unknowns given
Eqs. ~18! has to be solved for certain boundary conditio
which can be obtained from the Rankine-Hugoniot jum
conditions given by Eqs.~10!. The result is given by

u1
!5

5

4
t01

1

4
, t15

7

8
t01

3

16
2

5

16
t0

2 , u0
!51. ~19!

Notice that these boundary conditions are written in terms
t0, the reduced temperature in the upflow state. This quan
is related to the Mach number (M ), which is defined as the
ratio of the velocity of the shock at upflow and the adiaba
sound velocity at upflow, by the relation

M5A 3

5t0
, ~20!

where the ratio of the specific heat at constant pressure
vided by that at constant volume is taken to be 5/3, a
should be for a classical gas without internal degrees of fr
dom.

It is a common practice in the literature to divide the fir
equation of Eqs.~18! by the second one and obtain only on
first-order differential equation, but it is also possible to tre
the whole dynamical system given by Eqs.~18! as is done
here. Since the calculations for such two dimensional
namical systems are simple and the results are well kno
@3,13#, we will mention only what we found. The upstrea
critical or stationary point (1,t0) is an unstable node and th
downstream critical point (u1 ,t1) is a saddle. This is, of
course, in agreement with known results and in fact it h
been known for a long time that there exists a unique diff
ential curve joining the critical points (1,t0) and (u1 ,t1) @3#.
In the mathematical literature a curve connecting two criti
points is referred to as a heteroclinic trajectory so we w
adopt this terminology. Following Holianet al. @49#, we as-
sume that the upstream critical point is obtained whens→
2` and the downstream one whens→`. In this case and
due to the topological nature of the stationary points
solution curve must go from the saddle to the unstable no
which becomes a stable node since the integration with
spect tos goes in the negative direction, that is,s varies from
positive to negative values. The topological nature of
stationary points also provides us with a practical way
obtain the solution numerically, a method used long ago
Gilbarg and Paolucci@3#. In modern terminology it can be
expressed as follows. One perturbs the downstream sta
ary point and integrates numerically towards→2`; then,
when the perturbed point is in the basin of attraction of
invariant set, the numerical solution will be attracted to it a
it will give an approximate solution to the problem, that
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the heteroclinic trajectory will emerge. Holianet al. @49#
noted that it was sufficient to perturb the downstream vel
ity by making it a little higher than its asymptotic value
order that the perturbed point be in the basin of attraction
an invariant set, although they reported the calculations o
for t050 (M5`). On the other hand, other authors@35#
and we ourselves@47# have used the procedure by Holia
et al. to numerically generate the profiles for finite Mac
numbers and in fact the same procedure worked out for
Burnett equations@50#. Figure 1 shows the integral curves
the dynamical system given by Eq.~18! for different initial
values andM52.0. In this case we have also consider
initial conditions far from downstream to show that the s
lutions generated numerically are attracted to the heteroc
trajectory whose numerical approximation corresponds to
orbit generated by the initial condition that is very near t
upstream critical point.

C. The Burnett dynamical system

The Chapman-Enskog@28# expansion generates the co
tributions to the fluxes at different orders in the Knuds
number. The zero-order term in the Knudsen number, wh
corresponds to a nonviscous fluid, gives the following valu
for the pressure tensor and heat flux:

P(0)5pI , q(0)50, ~21!

whereI is the unit tensor. Substitution of the previous co
stitutive relations in the conservation equations~4!–~6! gives
the Euler equations. To first order in the Knudsen numb
which corresponds to the second-order term in the Chapm
Enskog expansion, the corresponding expressions are

P(1)522m“c0

°

, q(1)52l“T, ~22!

where the double overbar denotes the symmetric tensor
overcircle denotes the corresponding traceless tensor@28#,
and c0 is the hydrodynamic velocity. In the Navier-Stoke

FIG. 1. Orbits in theu!-t plane forM52 and different initial
values. Squares, critical points; solid line, Navier-Stokes; do
line, Burnett; crosses, initial points.
-

f
ly

e

-
ic
e

h
s

-

r,
n-

he

regime the total pressure tensor, meaning the contribut
up to first order in the Knudsen number, is the sum ofP(0)

and P(1) with an analogous result for the heat flux. Whe
c05u(x) i the result forPNS[P(0)1P(1) reduces to the ex-
pression given in Eqs.~11!, and similarly for the heat flux.

The contribution to second order in the Knudsen num
or the third-order term in the Chapman-Enskog expans
has been calculated by Burnett@61# ~see also Chap. 15 in
Ref. @28#! and the results can be expressed in the form

P(2)5v1

m2

p
De̊1v2

m2

p
H D0

Dt
e̊22“c0•e̊

° J 1v3

m2

rT
““T

°

1v4

m2

rpT
“p“T

°

1v5

m2

rT2 “T“T

°

1v6

m2

rT
e̊•e̊

°

,

q(2)5u1

m2

rT
D“T1u2

m2

rT H D0

Dt
“T2“c0•“TJ

1u3

m2

rT
“p•e̊1u4

m2

r
“•e̊1u5

3m2

rT
“T•e̊, ~23!

wheree[“c0 and the action of the operatorD0 /Dt can be
found in Eqs.~15.2.8! and ~15.2.9! of Ref. @28#. The coeffi-
cientsv andu are dimensionless numbers which are kno
for rigid spheres and some other models@28#. In terms of the
reduced variables given by Eq.~14! and usingc05u(x) i, the
dimensionless expressions forPxx

BU[Pxx
(0)1Pxx

(1)1Pxx
(2) and

qx
BU[qx

(0)1qx
(1)1qx

(2) turn out to be given by

Pxx
BU![

Pxx
BU

r0u0
2 5

t

u! 2At
du!

ds
1H @2v1/3214v2/912v6/9#

3S du!

ds D 2

2
2

3
v2

d

dsFu!
d

ds
~t/u!!G1

2

3
v3

d2t

ds2

1
2

3
v4

u!

t

d

ds
~t/u!!

dt

ds
1

2

3

v5

t S dt

dsD
2J 9u!

16
,

qx
BU![

qx
BU

r0u0
3 5H @u128u2/312u5#S du!

ds D S dt

dsD
1

2

3
@u42u2#t

d2u!

ds2 1
2u3u!

3

du!

ds

d

ds
~t/u!!J 9u!

16
,

~24!

where for simplicity we have omitted thes dependence ofu!

andt. Substitution of Eq.~24! in Eqs.~15! and~16! leads us
to a system of two differential equations of second order
u! andt, a system that is equivalent to a first-order syst
in four dimensions. In terms ofy1(s)5u!(s), y2(s)
5t(s), y3(s)5u!8(s), y4(s)5t8(s), the first-order
system can be written as

y8~s!5F„y~s!,t0…, ~25!

where the prime denotes the derivative with respect tos and
the vector fieldF(y) is given by

d
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F1~y,t0!5y3 , F2~y,t0!5y4 ,

F3~y,t0!5
3

2y1
2y2~u42u2!

F40

9
t0y12

16

9
t0y1

21
8

9
y12

16

9
y1

2

1
8

9
y1

32
8

3
y1y215y1y4Ay22y3y4y1

2S u12
8

3
u2

1
2

3
u312u5D1

2

3
y1u3y3

2y2G ,
F4~y,t0!5

1

y1
2y2~c21c3!

F16

9
t0y1y21

16

9
y1y22

16

9
y1

2y2

2
16

9
y2

21
16

9
y1y2

3/2y31y1y2
2c2F3~y,t0!

2y3
2~y1

2y2c11y2
2c2!2y4

2y1
2~c41c5!

1y3y4y1y2~c21c4!G , ~26!

where

c15
2

3
v12

14

9
v21

2

9
v6 , c252

2

3
v2 ,

~27!

c35
2

3
v3 , c45

2

3
v4 , c55

2

3
v5 .

The results forPxx
! and qx

! given by Eqs.~23! are inde-
pendent of the interaction potential between the gas at
except for the coefficientsv andu which can in principle be
computed for any interaction potential. In fact accurate v
ues are available for Maxwell molecules and rigid sphe
@14,28#. For rigid spheres, the explicit values used in th
work are the following:

v151.01434, v251.01432, v350.80633,

v450.681, v650.92838,

v55
3

2
30.80620.99, u15

45

4
31.035,

u25
45

8
31.035, u352331.03,

u45330.806, u55S 105

4
30.9181

3

2
30.80620.15DY3.

~28!

As in the previous case, the idea of perturbing the dow
stream critical point by making the velocity slightly great
and integrating to the upstream critical point is also appl
for the dynamical system given by Eqs.~25! and~26! and we
will come to this point later on. In Fig. 1 the projection of th
solution curves in theu!-t plane is given forM52, while
some details of the numerical methods used are given in
next section.
s
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III. SIMULATIONS AND NUMERICAL METHODS

In this section we describe the results coming from
numerical calculations. Two main approaches are used. F
we used Adam’s method with a tolerance of value 10215 to
solve the differential equations given by Eqs.~25! and ~26!.
A comparison of the ensuing results with other metho
such as the Runge-Kutta and the backward differentia
formula, has been carried out before@47,50# in the case of
the Navier-Stokes equations and the Holian theory. We w
not describe these numerical methods further since they h
been considered in detail in the literature@39–42#. The sec-
ond approach was to explore the direct simulation method
implemented by Bird@62#. There are other variants of th
DSMC method, such as Nambu’s method, but we decide
use Bird’s implementation since it is presently more a
cepted and it has been validated with experimental d
@63,64#. A comparison between Bird’s and Nambu’s met
ods and questions regarding the convergence of both m
ods to a solution of the Boltzmann equation are available
the literature@37,65#. Salomons and Mareschal@48,49# men-
tioned that the results from DSMC and NEMD are similar
fact that we have corroborated forM5134. Therefore, we
will mainly discuss the DSMC results.

Due to the advent of the computer, rather detailed inf
mation can now be obtained and analyzed. In particular,
formation about the distribution function can be obtain
from both experiments and DSMC simulations@37,64,66#.
We will compare the velocity and temperature profiles b
higher order moments can also be considered, as was do
part by Salomons and Mareschal@48#, who compared the
viscous pressure tensor and the heat flux with numer
simulations. In the literature it is usual to take the sho
thickness as a criterion to assess different theories and s
lations; although a more interesting definition used for su
comparisons is the asymmetry factor. However, these de
tions depend only on the velocity~or the density! profile,
which we believe has only partial information. Instead,
this work we explore the orbits in ‘‘phase space,’’ giving u
the opportunity to see the information about both the veloc
and temperature profiles. Furthermore, the orbits do not
pend on the choice of the origin and so one does not hav
decide between the different choices that are available in
literature. For the Burnett dynamical system we will giv
different projections of the solution curves since the orb
are in a four dimensional space, in contrast to the orbits
the Navier-Stokes equations which are two dimensional.

There are other numerical methods available to solve
Boltzmann equation such as Nordsiek’s method@67–69#; we
will give some of the results of the method for the sho
wave problem. Also, we have discrete velocity models@70–
72#, such as the Boltzmann lattice gas or cellular autom
which are very efficient from a computational point of vie
but we do not provide a comparison with them.

We have done calculations at a Mach number of valu
and the results are given in Figs. 2–9. Figure 2, which gi
the orbits forM52 as predicted by different theories an
DSMC, readily shows that the projection of the orbit give
by the Burnett equations in theu!-t plane are by and large in
better agreement with the DSMC results. It is interesting
note that the Navier-Stokes and Holian theories give ide
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cal results, a fact that can be understood by claiming that
Holian theory is a reparametrization of the Navier-Stok
equations, but, as expected, differences between these
theories will become apparent in other planes. The same
clusion, a better agreement on the whole of the Burnett eq
tions with DSMC, can be obtained when comparing the p
jection of the orbits in other planes as shown in Figs. 3
Notice that the derivatives ofu! and t for the DSMC data
were evaluated using centered differences. Furthermore
velocity and temperature profiles given in Figs. 6 and 7 sh
again that the Burnett equations are on the whole in be
agreement with the DSMC data, and in these figures
choice of origin is taken according to Bird@37#.

While the previous comparison shows that the Burn
equations are better when compared with DSMC it is con
nient to carry out a more detailed comparison near the c
cal points. Figure 8 shows an expanded view near the
stream critical point, where the DSMC data are nearer

FIG. 2. Orbits in theu!-t plane for M52. Squares, critical
points; solid line, Navier-Stokes; dotted line, Burnett; circle
DSMC; diamonds, Holian theory.

FIG. 3. Orbits in theu!-u!8 plane forM52. Solid line, Navier-
Stokes; dotted line, Burnett; circles, DSMC; dash-dotted line, H
lian theory.
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both the Navier-Stokes and the Holian theories. Howev
the dispersion exhibited by the DSMC data is not around
critical point as expected; but notice that the difference
very small. There are several possible reasons for this:~a! the
first is to consider it as an indication that the heteroclin
trajectory does not exist;~b! the second would be that th
upstream critical point has some structure, perhaps simila
the one given by the Burnett equations, and that the DS
method is unable to capture the details;~c! a third is that it is
necessary to consider bigger boxes in the computatio
scheme, and finally~d! the fourth is that it is necessary t
consider longer times. We have studied some of these po
bilities. As pointed out by Bird@37# the results obtained by
his code are not very good if very large boxes are taken;
have indeed corroborated this fact by considering lar
boxes. On the other hand, we have also considered lo
times and seen that the dispersion is not substanti

,

-

FIG. 4. Orbits in thet-t8 plane forM52. Solid line, Navier-
Stokes; dotted line, Burnett; circles, DSMC; dash-dotted line, H
lian theory.

FIG. 5. Orbits in theu!8-t8 plane forM52. Solid line, Navier-
Stokes; long dashed line, Burnett; circles, DSMC; dot-dashed l
Holian theory.
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changed. Pham-Van-Diepet al. @31# modified a code by
Bird, claiming that there is a truncation error for the tempe
tures and this could explain the behavior observed here
similar behavior of the DSMC data is shown at the dow
stream critical point and is given in Fig. 9. Notice that t
conclusions previously mentioned remain valid on the wh
and we would like to point out that the differences found a
about the expected accuracy when using single preci
arithmetic. Nevertheless, it seems strange that the fluc
tions are not around the critical points. Pham-Van-Diepet al.
@31# mentioned also that the velocity profiles are not affec
by the truncation error found by them, although the DSM
velocity profiles obtained by us clearly exhibit a dispersi
that on average is below the upstream critical point. A
consequence of this behavior we have been unable to ca
late the asymmetry factor with confidence~see below!.

Garcia and collaborators@73–75# have shown that fluc-
tuations in DSMC results can have a physical meaning

FIG. 6. Reduced velocity profiles versus the reduced length
M52, u! vs s. Solid line, Navier-Stokes; dotted line, Burnet
circles, DSMC; diamonds, Holian theory.

FIG. 7. Reduced temperature profiles versus the reduced le
for M52, t vs s. Solid line, Navier-Stokes; dotted line, Burnet
circles, DSMC; diamonds, Holian theory.
-
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there is a one-to-one correspondence between the numb
simulated molecules and the number of real molecules~see
also Ref.@37#!. If DSMC simulation fails to reach one of th
critical points it may be an indication that a heteroclinic tr
jectory does not exist. However, to be sure that this is
case, one must reduce the transverse dimensions of the s
lation box, taken as 1 m2 by Bird @37#, so that the numbers
of simulated molecules and real molecules are approxima
equal. Such considerations would lead us to a major cha
in Bird’s code, a task beyond the scope of this paper. No
that, even if the dispersion of the DSMC data is around
critical point, its analysis when one can ascribe a phys
meaning to it may give some information regarding the e
istence of a heteroclinic trajectory or the structure of an
tractor in case there is one. It seems that the DSMC met
and the NEMD method are by their nature unable to prov

r

ht

FIG. 8. Behavior of the orbits in theu!-t plane near upflow for
M52. Squares, critical points; solid line, Navier-Stokes; dott
line, Burnett; circles, DSMC; diamonds, Holian theory.

FIG. 9. Behavior of the orbits in theu!-t plane near downflow
for M52. Squares, critical points; solid line, Navier-Stokes; dott
line, Burnett; circles, DSMC; diamonds, Holian theory.
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clues about the existence of a heteroclinic trajectory in
mathematical sense, but this point needs further elucida
With Adam’s method we have, of course, the restriction
studying finite size boxes and in practice we have been
to carry out the integration up tos52109. In this case the
behavior of the orbits is not very interesting but represen
test for the robustness of the numerical method employ
For the DSMC method the boxes considered are about
mean free paths. It is also interesting to notice that in so
cases the evidence for the nonexistence of a heteroc
curve becomes apparent at large scales or through a c
inspection of the data, as shown in Figs. 10–13 for the B
nett dynamical system. The questions previously raised
irrelevant if one is interested only in the overall form of th
profile, and it is our thought that at present questions reg
ing the existence of the heteroclinic trajectory can be tack
only with theoretical methods.

The asymemtry factor (Qr) is defined by takingL5` in

FIG. 10. Velocity profiles for the Burnett dynamical system a
Mach number of value 2.75.

FIG. 11. Velocity profiles for the Burnett dynamical system a
Mach number of value 2.75.
e
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Qr~L ![

E
2L

0

rn~x!dx

E
0

L

@12rn~x!#dx

, ~29!

where

rn~x!5
r~x!2r0

r12r0
. ~30!

Here r is the mass density and the subscripts refer to
values downstream and upstream. In practice, one has to
a finite L to calculate the asymmetry factor but the pres
results taken from DSMC simulations are not of enou
quality to calculateQr(L) with confidence. In Fig. 14 we
have considered the values reported by Pham-Van-D
et al. @31# for rigid spheres. On the other hand we have p
vided the values for this quantity using the Navier-Stok

FIG. 12. Projection of the orbit for the Burnett dynamical sy
tem in theu!-t plane for a Mach number of value 2.75. Solid lin
Burnett; square, downstream critical point.

FIG. 13. Projection of the orbit for the Burnett dynamical sy
tem in theu!-t plane for a Mach number of value 2.75 near upflo
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Holian, and Burnett equations. Most of the data included
this figure were taken from Fig. 8 of the work by Alsmey
@7# but we have restricted the Mach numbers to values lo
thanMc , which is the Mach number at which the upstrea
critical point changes from an unstable node to a saddle~see
next section!. The reason is that in this region we think th
the results obtained with the Burnett equations are relia
for calculating the asymmetry factor or the shock thickne
In addition we have included in Fig. 14 the experimental d
of Garenet al. @76#. The conclusion is the same as advanc
before by Alsmeyer@7# and others@31# in the sense that the
Burnett equations are better than the Navier-Stokes equa
for M<2, although we think that there is a risk in conclu
ing the superiority of a theory based on only one numb
Coming back to Fig. 10 one may be tempted to calcul
Qr(L) for L520 for the Burnett equations, but the result
unreliable since there is no structure for the calculated or
the same remark applies to the shock thickness especia
higher Mach numbers.

In a previous communication@50# we provided the veloc-
ity and temperature profiles predicted by the Burnett eq
tions forM5` so it is instructive to see the projection of th
solution curve in theu!-t plane. The calculations were don
for M5134 and the results can be seen in Fig. 15. O
more, the Burnett equations give on the whole a better
scription when compared with DSMC results. However,
we mentioned before@50#, the orbits have a terminal point a
clearly shown in Fig. 16; this result can be understood
claiming that the local flow cannot be extended to all the r
numbers@50#. At this stage we remind the reader that t
integration is carried out in the negative direction. Since
orbit terminates, we have evidence~but not proof! that there
is no heteroclinic trajectory for the Burnett equations. It
possible to calculate the shock thickness but, as we poi

FIG. 14. Asymmetry factor versus the Mach number. So
circles, Burnett for rigid spheres~present results!; diamonds, Holian
theory for rigid spheres~present results!; triangles, Navier-Stokes
for rigid spheres~present results!; solid line, Navier-Stokes for the
Maxwell model~from Alsmeyer@7#!; dotted line, Nordsiek method
for rigid spheres~from Alsmeyer @7#!; dashed line, experimenta
values ~from Alsmeyer @7#!; squares, experimental data~from
Garen et al. @76#!; open circles, DSMC for rigid spheres~from
Pham-Van-Diepet al. @31#!.
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out before, we do not think that the calculation would
reliable since we do not get any structure for the calcula
orbit; in fact, a closer inspection reveals that the derivativ
become very large. On the other hand, Grad’s method d
not give structure for Mach numbers greater than 1.65, so
question that remains is if one would expect to have struc
for all Mach numbers as happens with the Navier-Sto
equations. This question can be settled in the context of
Boltzmann equation and not using its approximations.
though we shall comment on this issue later on, we wo
like to make an estimation of the magnitude of the quantit
involved for strong shock waves. Assume thatm56.6
310226 kg and that the conditions at upflow correspond
standard values (T5300 K, p51 atm, or about 105 Pa),
then the sound velocity is equal to 323 m/s and the num
density is about 2.531025 m23. The question that we ask is

FIG. 15. Orbits in theu!-t plane for a Mach number of value
134. Squares, critical points; solid line, Navier-Stokes; dot-das
line, Burnett; circles, DSMC; diamonds, Holian theory.

FIG. 16. Orbits in theu!-t plane for a Mach number of value
134. Squares, critical points; solid line, Navier-Stokes; dot-das
line, Burnett; circles, DSMC; diamonds, Holian theory.
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what is the temperature downstream? Notice that the num
densities at downflow can be at most four times the den
at upflow@see Eqs.~10! and~19!#, and so the dilute condition
is expected to hold provided that it holds at upflow. ForM
5100 and using the Rankine-Hugoniot equations we ob
that this temperature is of order 93105 K. Clearly at such
temperatures the system will be ionized. For instance, if
thinks of argon, it has an ionization energy of abo
15 eV (T'174 000 K) @77#. Thus, the question of finding
structure for large Mach numbers for theories that desc
monatomic gases is academic, but provides a stringent
for different theories. At a Mach number of 10 the tempe
ture downstream is about 9500 K. The first ionization lim
for argon, namely, the temperature at which 1% of the ato
are ionized, is 9500 K and 7700 K at pressures of 105 Pa
and 103 Pa, respectively@78#. Therefore since the pressu
at downflow is about 100 atm ('107 Pa) one does not nee
to worry about the internal structure of the gas.

It is interesing to note that forM5134 the dispersion
exhibited by the DSMC data near both critical points exhib
the expected behavior~see Figs. 17 and 18! and is in con-
strast with the behavior found forM52 ~see Figs. 8 and 9!.

The extensive comparisons performed atM52 ~see Figs.
2–7! show that the Burnett equations provide a substan
improvement over the Navier-Stokes equations when c
pared with results from DSMC simulations. The eviden
based on the asymmetry factor provided by Alsmeyer@7#
~see Fig. 14! shows again that the Burnett equations impro
on the Navier-Stokes equations for Mach numbers nea
Thus we can safely conclude that the Burnett equations
better than the Navier-Stokes equations for Mach numb
smaller thanMc . For large Mach numbers the Burnett equ
tions again give a better agreement in theu!-t plane al-
though the derivatives ofu! andt become large near upflow
This means that the Burnett equations are no better than
Navier-Stokes equations near upflow and the reason for
behavior is the lack of structure for the calculated orbit. W
do not know yet if there is no structure for the Burnett equ
tions when M.Mc , but in case this is affirmative, on
would need to know if the Boltzmann equation has struct

FIG. 17. Orbits in theu!-t plane for a Mach number of valu
134. Squares, critical points; solid line, Navier-Stokes; circl
DSMC; diamonds, Holian theory.
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for M.Mc in order to conclude that the Navier-Stokes equ
tions are better than the Burnett equations forM.Mc . Even
so, the calculated orbit for the Burnett dynamical system
on the whole in better agreement with results from DSM
calculations.

IV. MATHEMATICAL ANALYSIS

In this section we discuss some of the relevant mathem
cal aspects of the dynamical system given by Eqs.~25! and
~26!. The main problem here is to find the conditions und
which a heteroclinic trajectory exists joining the two statio
ary points (1,t0,0,0) and (u1 ,t1,0,0) @see Eq.~19!#. Al-
though this question belongs to the subject of global ana
sis, it is important to deal first with local analysis in order
obtain the necessary conditions for the existence of a het
clinic trajectory. The study of any nonlinear phenomenon
a difficult task and the first question that jumps into one
mind is under what conditions a nonlinear system is equi
lent, under some criteria, to linearized equations, for whic
great deal of information is available. There are differe
lines along which this question can be answered, and here
will deal with only one of its features.

A. Local analysis

In local analysis the interest is centered on the local
havior around the critical~or stationary! points and the ques
tion to answer is under what conditions the local topologi
behavior of the nonlinear dynamical system is equivalen
its linearized version. Letf e(x) be a vector field defined fo
xeU<R, with values inRn, whereU is an open subset an
e is a real number or, in general, a vector inRk. Also, let
x(s) denote a solution curve for the vector field so that

x8~s!5 f e„x~s!…, ~31!

where the prime denotes the derivative with respect tos. If
we assume that the vector fieldf e has continuous partia
derivatives inU, f ePC1(U), and if x0 is a stationary

,
FIG. 18. Behavior near the upstream critical point in theu!-t

plane for a Mach number of value 134. Squares, critical poin
solid line, Navier-Stokes; circles, DSMC; diamonds, Holian theo
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point of f e , we can consider the solutiony(t) of the linear-
ization of f e aroundx0, which satisfies

y8~ t !5J fe~x0!@y~ t !#, ~32!

whereJ fe(x0) is the differential off e at x0. Alternatively,
the reader may think ofJ fe(x0) as the Jacobian matrix off e
at x0, which will be denoted byA. The prime denotes the
derivative with respect tot. The solution curves for the linea
system given by Eq.~32! are then given by@79,80#,

y~ t !5exp(t2t0)Ay~ t0!, ~33!

where the exponentiation of a matrix is defined in terms
the series@79,80# andy(t0) denotes any given initial condi
tion. So for linear systems the problem of finding the so
tion curves is equivalent to the calculation of the exponen
of a matrix, and furthermore the type of eigenvalues of
matrix A determine the type of possible solution curv
@79,80#. It is also important to mention that the eigenvecto
corresponding to the eigenvalues ofA with positive real parts
generate a subspace ofRn called the unstable vector spac
Eu. The eigenvectors corresponding to eigenvalues ofA with
negative real parts generate a subspace called the stable
tor space and denoted byEs.

When all the eigenvalues ofJ fe(x0) have real parts dif-
ferent from zero,x0 is a hyperbolic point and the Hartma
@79# ~or Hartman-Grobman@81#! theorem holds. This theo
rem establishes that for hyperbolic stationary points@79#
there exists a continuous invertible map, defined in a ne
borhood ofx0, which takes the solution curves of the no
linear system, given by Eq.~31!, to those of the linear system
given by Eq.~32!. The theorem then gives us the conditio
under which the topological structure of the nonlinear syst
around a stationary point is the same as its lineariza
around the critical point. So for hyperbolic points it
enough to study the linearization around a stationary poin
find the qualitative features of the solutions for the nonlin
system around the point in question. Another important th
rem that holds for hyperbolic points is the stable manifo
theorem@79#, which states that for a hyperbolic critical poin
(x0) there exist manifolds~‘‘surfaces’’! Wu and Ws, called
the unstable and stable manifolds, respectively, with
same dimension asEu and Es, respectively, such that the
are tangential toEu andEs at the pointx0. In the mathemati-
cal literature the stable manifold theorem is also found un
the name ‘‘Hadamard-Perron’s theorem’’@82#. For nonhy-
perbolic points there is an analogous theorem to the st
manifold theorem which bears the name of ‘‘the center ma
fold theorem’’ @79,81,83#.

We can now understand the following statement made
Smoller @51#; ‘‘ There is an alternate topological way of e
pressing the fact that two rest points are connected by
orbit; namely, we can say that the stable manifold of o
intersects the unstable manifold of the other. If this situat
is to be ‘‘structurally stable’’ (i.e., remain true under sma
perturbations), then the sum of the dimensions of the sta
and unstable manifolds must exceed that of the space.
interesting that the entropy inequalities (24.4), allow us
explicitly compute these dimensions.’’ Two comments are
pertinent at this point, but we first introduce some notation
order to make them simpler. Letx0 andx1 be critical points.
f
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The unstable and stable vector spaces at each of the p
will be denoted byExi

u and Exi

s , i 50,1, respectively, and a

similar notation will be used for the unstable and sta
manifolds at each of the points. Whenx0 is not a hyperbolic
point then the direct sum of the previous vector spaces
each point is notRn because one must introduce the ‘‘ce
ter’’ vector spaceEc @79#. For simplicity we will assume tha
the stationary points are hyperbolic. The first remark
Smoller means that eitherWx0

u ùWx1

s ÞB, or Wx0

s ùWx1

u

ÞB. However, in the case of homoclinic trajectories, tho
for which an orbit connects a critical point with itself, it i
known @84# that if the stable manifold intersects the unstab
manifold transversely, the dynamics can be very complica
~homoclinic tangle!, so in the case of a heteroclinic trajecto
the same complications may appear unless the intersectio
the manifolds is tangential. The second remark gives a cr
rion regarding the dimensions of the manifolds such that
heteroclinic trajectory is ‘‘stable.’’ We will refer to this a
Smoller’s criterion, meaning that provided thatWx0

u ùWx1

s

ÞB then the heteroclinic trajectory is stable if dim(Wx0

u )

1dim(Wx1

s ).n. Finally, Smoller’s last remark is not ver

important for us since we will be able to calculate the dime
sion of the unstable and stable manifolds, for each of
points, by evaluating the eigenvalues of the Jacobian ma

We will now apply the previous mathematical concep
and theorems to the Burnett dynamical system given by E
~25! and ~26!. Let us first calculate the partial derivatives
the vector field given by Eq.~26!, which for the first two
components of the vector field can be calculated in
straightforward way. They read

D3F1~y,t0!51, D4F2~y,t0!51, ~34!

whereDk5]/]yk and all the other partial derivatives ofF1
andF2 are equal to zero. The other partial derivatives ar
little more complicated to calculate, the results being

D1F3~y,t0!52
20t0

3y1
2y2~2u21u4!

2
4

3y1
2y2~2u21u4!

1
4

3y2~2u21u4!
1

4

y1
2~2u21u4!

2
15y4

2y1
2Ay2~2u21u4!

2
u3y3

2

y1
2~2u21u4!

,

D2F3~y,t0!52
15y4

4y1y2
3/2~2u21u4!

2
20t0

3y1y2
2~2u21u4!

1
8t0

3y2
2~2u21u4!

2
4

3y1y2
2~2u21u4!

1
8

3y2
2~2u21u4!

2
4y1

3y2
2~2u21u4!



de-

6660 PRE 62URIBE, VELASCO, GARCI´A-COLÍN, AND DÍAZ-HERRERA
1
3y3y4u1

2y2
2~2u21u4!

2
4y3y4u2

y2
2~2u21u4!

1
y3y4u3

y2
2~2u21u4!

1
3y3y4u5

y2
2~2u21u4!

,

D3F3~y,t0!52
3y4u1

2y2~2u21u4!
1

4y4u2

y2~2u21u4!

2
y4u3

y2~2u21u4!
2

3y4u5

y2~2u21u4!

1
2u3y3

y1~2u21u4!
,

D4F3~y,t0!5
15

2y1Ay2~2u21u4!
2

3y3u1

2y2~2u21u4!

1
4y3u2

y2~2u21u4!
2

u3y3

y2~2u21u4!

2
3y3u5

y2~2u21u4!
,

D1F4~y,t0!52
16t0

9y1
2~c21c3!

2
16

9y1
2~c21c3!

1
32y2

9y1
3~c21c3!

2
16Ay2y3

9y1
2~c21c3!

2
y2c2F3~y,t0!

y1
2~c21c3!

1
2y2y3

2c2

y1
3~c21c3!

2
y3y4c2

y1
2~c21c3!

2
y3y4c4

y1
2~c21c3!

1
y2c2D1F3~y,t0!

y1~c21c3!
,

D2F4~y,t0!52
16

9y1
2~c21c3!

1
8y3

9y1Ay2~c21c3!

1
c2F3~y,t0!

y1~c21c3!
2

y3
2c2

y1
2~c21c3!

1
y4

2c4

y2
2~c21c3!

1
y4

2c5

y2
2~c21c3!

1
y2c2D2F3~y,t0!

y1~c21c3!
,

D3F4~y,t0!5
16Ay2

9y1~c21c3!
1

y2c2D3F3~y,t0!

y1~c21c3!
2

2y3c1

c21c3

2
2y2y3c2

y1
2~c21c3!

1
y4c2

y1~c21c3!
1

y4c4

y1~c21c3!
,

D4F4~y,t0!5
y2c2D4F3~y,t0!

y1~c21c3!
2

2y4c4

y2~c21c3!
2

2y4c5

y2~c21c3!

1
y3c2

y1~c21c3!
1

y3c4

y1~c21c3!
. ~35!

The Jacobian matrices at upflow and downflow states,
noted byJFup andJFdo, respectively, can be obtained from
Eqs. ~34! and ~35!. Thus, the matrix elements ofJFup are
given by

JF11
up50, JF12

up50, JF13
up51,

JF14
up50, JF21

up50, JF22
up50, JF23

up50,

JF24
up51, JF31

up52
8

3~u42u2!
,

JF32
up52

4

t0~u42u2!
, JF33

up50,

JF34
up5

15

2At0~u42u2!
,

JF41
up5

16
9 t0

22 16
9 t02 8

3 t0
2c2 /~u42u2!

t0~c21c3!
,

JF42
up5

2 16
9 t024t0c2 /~u42u2!

t0~c21c3!
, JF43

up5 16
9

At0

c21c3
,

JF44
up5 15

2

At0c2

~u42u2!~c21c3!
. ~36!

For JFdo the first two rows are the same as forJFup and the
other matrix elements are given by

JF31
do5

128

3~5t011!2~u22u4!
,

JF32
do52

256

~214t015t0
223!~5t011!~u22u4!

,

JF33
do50, JF34

do52
120

~5t011!A14t025t0
213~u22u4!

,

JF41
do52

32

9

12t0u213c2t0212t0u424u229c214u4

~c21c3!~5t011!2~u22u4!
,

JF42
do5

64

9

4u419c224u2

~c21c3!~5t011!2~u22u4!
,

JF43
do5

16

9

A14t025t0
213

~5t011!~c21c3!
,

JF44
do52

30A14t025t0
213c2

~u22u4!~5t011!2~c21c3!
. ~37!
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The eigenvalues (l) of the Jacobian matrix at upflow ca
be obtained from Eq.~36!. It follows that

54t0
5/2~u22u4!~c21c3!l41405t0

3c2l3

1t0
5/2@96~u22u4!2360c22144c31720#l2

1t0
2~720t021104!l1t0

3/2~3842640t0!50.

~38!

Notice that in Eq.~4! of our previous work@50# we forgot to
include the factor 720 that appears in the term that multip
l2.

The eigenvalues of the Jacobian matrix at downflow
the solutions of a fourth-order polynomial of the forma0
1a1l1a2l21a3l31a4l450, where

a05~196 6082327 680t0!A14t025t0
213,

a15125 952t012 964 480t0
22101 3762998 400t0

3 ,

a25~49 920u4t0
2174 880c3t0

212304u42167 040t0

119 200u2t0
31187 200c2t0

2133 408c3t0219 200u4t0
3

217 280183 520c2t022304u22374 400t0
2

249 920u2t0
2122 272u4t0222 272u2t018640c2

228 800c3t0
31144 000t0

313456c3

272 000c2t0
3!A14t025t0

213,

a3527290c22558 900c2t0
31546 750c2t0

42101 250c2t0
5

2474 660c2t0
22104 490c2t0 ,

a45~237 125u2c3t0
4111 610u4c3t0

2116 875u2c3t0
5

21593u2c3t0216 875u4c2t0
5211 610u2c2t0

2181u4c2

136 450u4c3t0
3216 875u4c3t0

5137 125u4c3t0
4

111 610u4c2t0
2211 610u2c3t0

211593u4c2t0

11593u4c3t0181u4c3137 125u4c2t0
4281u2c3

236 450u2c2t0
3281u2c2237 125u2c2t0

4

116 875u2c2t0
5136 450u4c2t0

321593u2c2t0

236 450u2c3t0
3!A14t025t0

213. ~39!

In Figs. 19 and 20 the corresponding real and imagin
parts of the eigenvalues obtained from Eqs.~38! and~39! are
given. For the sake of clarity we have not included in t
graphs the points corresponding to zero imaginary part.
seen from Fig. 19 that the downflow is a saddle w
dim(Eu)53 and dim(Es)51. Also, for t0 less than
3/5 (M51) and greater than approximatelyt050.485 (M
'1.1123) two eigenvalues are complex and two are real,
for t0,0.485 (M.1.1123), all of them are real. In our pre
vious communication@50# we mentioned that they were a
ways real but the reason for this discrepancy is that
s

e

y

is

d

e

evaluated the eigenvalues for Mach numbers greater
M51.5 and incorrectly interpolated the results.

For upflow~see Fig. 20! and for Mach numbers less tha
aboutMC52.69 the critical point is an unstable node and f
M.MC it is a saddle with dim(Es)52 and dim(Eu)52. So
the upstream critical point has a bifurcation atMC in which
the unstable node changes to a saddle. We have investig
such a bifurcation previously and found a limit cycle@50#, so
that the bifurcation may be referred to as a saddle-no
Hopf bifurcation. Fort0 less than 1 and greater than a
proximately 0.34 (M51.33), two eigenvalues are comple
and two are real. For 0,t0,0.34 (M.1.33) all the eigen-
values are complex.

Results similar to those described above for the eigen
ues at the two critical points were reported by Foch@29,87#
for the case of the Maxwell model. Upstream the bifurcati
at which the unstable node becomes a saddle appears in
case atM51.9 @29#.

FIG. 19. Eigenvalues at downflow versust0. Solid lines, real
parts of the eigenvalues; dashed lines, imaginary parts of the ei
values. The zero imaginary parts of the eigenvalues are not sh

FIG. 20. Eigenvalues at upflow versust0. Solid lines, real parts
of the eigenvalues; dashed lines, imaginary parts of the eigenva
The zero imaginary parts of the eigenvalues are not shown.
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Notice that for Mach numbers greater thanMC and ac-
cording to Smoller’s remarks mentioned previously, a str
turally stable heteroclinic trajectory going from downstrea
to upstream is not expected, and this is consistent with b
our numerical calculations and the existence of the li
cycle reported previously@50#. However, a heteroclinic tra
jectory from upstream to downstream does not contra
Smoller’s criterion. We have been unable to find evidence
the existence of such a heteroclinic trajectory using num
cal methods. Notice that, in the discussion given by Mo
gomery@85#, such a possibility was not mentioned, perha
due to the expectation that a curve going from upflow
downflow is not allowed because the heat flow goes fr
downflow to upflow. In fact such an argument has been
vanced to explain the instability of some numerical metho
@44,49#. In this respect it is interesting to notice that th
13-moment approximation yields a solution that goes fr
upstream to downstream, for Mach numbers smaller t
1.65, and so the argument could be used to invalidate
13-moment solution. This fact was pointed out by Grad hi
self but apparently it has been forgotten in the recent lite
ture. In our opinion this point deserves further considerati

B. Global analysis

While the local analysis of the Burnett dynamical syste
given previously provides us with interesting information,
is unable to answer the question about the existence an
uniqueness of a heteroclinic trajectory. Global analysis de
with such questions. There is a theorem by Montgomery@85#
that focuses on such a question for the higher order grad
expansions provided by the Chapman-Enskog method, so
shall now discuss his results as applied to the Burnett eq
tions. However, a note of caution must be given since
theorem deals only with the existence but not with t
uniqueness of the heteroclinic trajectory.

There is a first requirement to apply Montgomery’s res
which consists in expressing the derivatives of higher or
~second-order derivatives in the case of the Burnett eq
tions! in terms of the derivatives of lower order. This pa
holds for the Burnett equations considered here and in fa
has been used to solve the two second-order differen
equations, provided by the Burnett equations, as a first-o
system in four dimensions.

Montgomery’s main theorem is the following. We sta
with the differential equation

dx

dt
5 f ~x,u!, ~40!

where xPU,Rn, U is an open subset andf :U3@0,1#
→Rn is a thrice differentiable function that satisfies two co
ditions: ~a! f „h(u),u…5 f (0,u)50, with h smooth such tha
h(0)50 and (dh/du)(0)5” 0, ~b! f x(0,0) @the Jacobian ma
trix of f (•,u)# has zero as a simple eigenvalue and no ot
eigenvalue has zero real part. Furthermore, ifl(u) is the
smooth function that gives the eigenvalues off x(0,0) with
l(0)50, it is assumed that (dl/du)(0)5” 0. Then there ex-
ists e.0 and an open setV, 0PV,U, such that foru
P(0,e# there is a solution of Eq.~40! x(t)PV for all t and
-
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x(t) connects 0 andh(u) as t varies from2` to 1` @if
(dl/du)(0).0#. More details are given in the work b
Montgomery@85#.

Two remarks are worth noting. The first is that the tw
critical points given by 0 andh(u) are the same foru50,
which corresponds tot053/5 (M51) and we may takeu
53/52t0. Second, we see that 0 is always a critical po
according to Montgomery but we can always make a tra
lation depending only on the Mach number so that one of
critical points is always 0. For example, if upflow is chos
to correspond to 0 then the functionf considered by Mont-

gomery can be defined asf (x,u)5F„x1(1,3
5 2u,0,0),35

2u… @x[yPR4; see Eq.~26!#. As we pointed outF has
continuous partial derivatives of any order on a certain op
set, which implies thatf is in particular a thrice differentia
function on a certain open set. Also,h(u)5(12 5

4 u, 3
5 2u/2

2 5
16 u2,0,0) has a nonzero derivative and furthermo

f „h(u),u…5 f (0,u)50 @see Eq.~10!# so condition~a! holds.
We now need to know if condition~b! holds. Takingt0

53/5 (u50) in Eq. ~38! we see thatl50 is a solution,
with multiplicity 1, of det@ f x(0,0)#5det(JFupuM51)50.
Notice that the eigenvalues are not affected by the spe
translation used to definef in terms ofF. Furthermore, from
Figs. 19 and 20 we see thatl(u) has a nonzero derivative a
u50 and no other eigenvalue has zero real part, so
Montgomery’s condition~b! also holds.

We conclude that there exists a heteroclinic trajectory
the Burnett dynamical system for Mach numbers greater t
1. Although the upper limit is not known from the theorem
our numerical calculations suggest that it is equal toMC .
The mathematical concepts used by Montgomery rely on
dex theory and the center manifold theorem. The reader
terested in having a deeper insight into these issues is
ferred to Montgomery’s work@85#, the book by Smoller
@51#, and Conley’s monograph@86#.

Finally, we end this section by summarizing the resu
There exists a saddle-node–Hopf bifurcation at upflow
Mc'2.69. In the case where 1,M,Mc the upstream criti-
cal point is an unstable node and becomes a saddle foM
.Mc , whereas the downstream critical point is always
saddle. Smoller’s criterion for its existence is satisfied
(1,Mc)ø(Mc ,`). Montgomery’s theorem does not give in
formation about the range of Mach numbers where the B
nett equations have structure; however, our numerical ca
lations give evidence about the existence of structure forM
P@1,Mc). So far we do not know if the Burnett equation
have structure forM.Mc , but we have found that the ca
culated orbit does not correspond to a heteroclinic traject
in this case. We must not forget that for large Mach numb
the question of the existence of a heteroclinic trajectory, e
for the Boltzmann equation, is academic.~One may be
tempted to consider the super-Burnett or higher-or
Chapman-Enskog expansions but, since they are extrem
involved, it is desirable to look for alternatives@88–90#.!

V. FINAL REMARKS

One of the basic questions raised by the results obta
in this work concerns the intrinsic nature of the Burn
equations. As has been pointed out in different conte
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these equations are surrounded by uncertainty that a
from various sources. The first one is their kinetic orig
They arise when the Boltzmann equation is solved thro
the Chapman-Enskog method and the solution is kep
terms of second order in the expansion parameter, nam
the Knudsen number. Since this number is a measure o
gradients in the system, the Burnett equations are the
order in the gradient corrections to the Navier-Stokes-Fou
equations. Two problems immediately appear: the conv
gence of the series, which is suspect even for small Knud
numbers@91#, and the fact that they are at odds with t
second law of thermodynamics. Since 1949@92,93# it has
been known that they generate an entropy that is depen
on the gradients and, further, their entropy production is
necessarily positive definite. Other sources of uncertainly
connected with the boundary conditions they must sat
and their frame dependence in rotatory coordinates@94#, but
we need not bother with all of them here. We wish here
comment on the first two of these aspects and on the pos
derivation of the equations by other methods. Further disc
sions of the Burnett equations and more references ca
found in the work by Dorfman and van Beijeren@95# and
elsewhere@96#.

In their work on shock waves at high Mach numbe
Ma'50, Chapmanet al. @32–34# emphasized that, althoug
the results obtained with the Burnett equations substant
improve those obtained with the NSF approximation,
above mentioned theoretical questions concerning the B
nett equations need to be clarified. It is worth noting that
their work they use the Burnett equations as obtained fr
the Boltzmann equation using the Chapman-Enskog met
Thus, indeed, the objections raised in the preceding sec
hold for their results. In fact one could be even more dra
and question the validity of the Chapman-Enskog expans
itself in the presence of large gradients, which is certainly
case whenM.1 @14#. In fact the first thing we must deter
mine is if such equations are structurally the same regard
of the method used for their derivation. Besides the Wo
@94# derivations, there are others@97# that appear to lead to
the same set as that obtained via kinetic theory. Neverthe
on account of all these facts we think that we have gaine
better understanding of the Burnett equations, although t
place within an irreversible thermodynamic framework a
relationship with kinetic theory still remain obscure@97–
100#. Due to the relative success of the Burnett equations
least in the problem of calculating shock wave profiles
high Mach numbers@50#, in the case of plane Poiseuille flow
@101# and in the case of a one dimensional strongly noni
thermal gas@102#, their here aspects emphasized deserve
ther attention.

As far as we know, the boundary conditions for the Bu
nett equations remain an open problem. For the Nav
Stokes equations stick boundary conditions are usually in
duced, but when Knudsen’s number is not small there ex
a slip at the boundary and the calculation of the veloc
jump is still under current research@65,103–105#. In this
sense the boundary conditions for the Navier-Stokes eq
tions are also an open question. The stick boundary co
tions can be used to solve the Burnett equations but of co
since they are of higher order the question of uniquen
becomes relevant. In this respect it is important to point
es
.
h
to
ly,
he
xt
r

r-
en

ent
t

re
y

o
le

s-
be

,

ly
e
r-

n
m
d.

on
ic
n
e

ss
s

ss,
a
ir

at
r

-
r-

-
r-
o-
ts
y

a-
i-
se
ss
t

that there are examples@106# ~Jeffery-Hamel flow! in which
for a fixed Reynolds number there are an infinite num
~countable! of solutions to the Navier-Stokes with stic
boundary conditions. Of course, the hydrodynamic stabi
analysis@107# becomes a relevant choice, when there is m
than one solution, one of which is stable. Nevertheless, in
case of Jeffery-Hamel flow there are regions in which th
exist more than one stable solution when a linear hydro
namic stability analysis is used@108#.

As we pointed out previously@50#, even when the solu-
tion to a set of equations exists~such as the Euler, NSF, o
Burnett equations!, it cannot be observed unless it is stable
the hydrodynamic sense, and several examples can be f
in the literature@107#. There are some partial results on th
hydrodynamic stability of the Euler equations for the s
called corrugational stability@4,12#. Liu @56# used constant
transport coefficients in the Navier-Stokes equations
show, using the energy method@107#, that the weak shock
wave profiles are nonlinearly stable. We do not know if the
results remain valid when the transport coeffcients are
constant, but probably this is the case. Other results abou
stability of the shock wave profiles for the Navier-Stok
equations have been discussed by Smoller@51#. For the Bur-
nett equations Bobylev’s instability@109# has been, appar
ently, the only theoretical result concerning their hydrod
namic stability. What was shown by Bobylev is that for
system of Maxwellian molecules that is at equilibrium t
Burnett equations are linearly unstable for longitudinal p
turbations.

Bobylev’s instability was used to explain an anoma
found by Chapman and collaborators@33,34# in the code
developed by Fiscko and Chapman@32# to solve the nonsta-
tionary Burnett equations for the shock wave problem. T
answer to this problem given by Chapman and collabora
was to consider either a restricted or an augmented se
equations by throwing out some of the terms given by
Burnett equations or by adding some terms which come fr
the super-Burnett equations. As a result of this, Chapm
and collaborators obtained a stable set of equations con
ing higher order gradients which are linearly stable for t
equilibrium state and behave well for the shock wave pr
lem. Furthermore, their claim is that the shock wave profi
obtained by the augmented system are nearly the sam
those from the Burnett equations. The last remark is doub
in view of our own findings for Mach numbers greater th
MC , unless they are finding a solution that probably go
from upstream to downstream. This point, as well as
local analysis of their augmented system for the station
case and the study of Bobylev’s instability for realistic p
tentials, deserve further study. Recently@110# we have gen-
eralized Bobylev’s analysis for other models and argued
Bobylev’s instability can also be understood as giving a cr
cal Knudsen number above which the Burnett equations
not valid. In other words, Bobylev’s instability appears f
‘‘large’’ Knudsen numbers where the Burnett equations
expected to be invalid, so the instability found by Bobyl
does not appear for small Knudsen numbers and the Bur
equations may provide an adequate description in this c
It is interesting to note that if normal modes of the for
exp(Vt81kx), where t8 and k are a reduced time and a re
duced wavelength@110#, are used to perturb the equilibrium
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solution considered by Bobylev@109#, then for realk a linear
hydrodynamic stability analysis gives the following dispe
sion relation:

18V3169V2k2130Vk2118Vk4

3F10

3
2

4

9
~u42u21v32v2!1

2v2

3 G
1

16

3
~v32v2!~u42u2!Vk6145k4130v2k650. ~41!

Comparing Eq.~41! with Eqs.~38! and ~27! we see that the
stability of the equilibrium state and the eigenvalues at
critical points for the shock wave problem are determin
only by the coefficientsv2 , v3 , u3, andu4.

On the other hand, the problem of the structure for sh
waves can be studied directly from the Boltzmann equa
itself and there indeed exist several works that deal with
issue @57–59,111#. It has been proved that the Boltzman
equation, for some interaction potentials, admits structure
Mach numbers near 1~weak shocks! but the precise value is
not known@57–59#. Grad @111# suggested that the solutio
for the Boltzmann equation for the shock wave problem
ists in the infinitely strong shock limit, and further wor
along these lines has been carried out by Cercignaniet al.
@22# and Caflisch@112#. As far as we understand, thes
works do not give a definite answer regarding the existe
of structure for large Mach numbers. So the problem of
existence of a critical Mach number above which there is
structure for shock waves, at the level of the Boltzma
equation, seems to be open, as well as the ‘‘stability’’ of
solution, when it exists. We refer the reader to the literat
cited above for further details.
,
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To conclude, we would like to comment on our view
the Burnett equations. In 1963 Grad@113# made the follow-
ing remark: ‘‘On the other hand, the Burnett equation
which also belong to this theory, are viewed with grave s
picion in most quarters and have never achieved any not
able success.’’ In the light of the present and other wo
@7,101,102# we think that, although they may be seen wi
grave suspicion, it is no longer true that they have n
achieved any noticeable success. The present work and
ers show that they are successful at least in some range o
relevant physical parameters. Bobylev’s instability provid
a range of Knudsen numbers for which the Burnett equati
are valid@110# and therefore this instability can no longer b
considered as a drawback. It would be naive to claim t
they are not susceptible to improvement, as a recent w
shows@101#. However, we think they provide some valuab
results and therefore they can be used as a guide tow
developing a more complete theory capable of dealing w
situations with large gradients where the Navier-Stok
equations are expected to be inaccurate.
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